3.1 practice exams

  3.1.1 Midterm 1, oct 2001
  3.1.2 My solution to Midterm 1, oct 2001
  3.1.3 Midterm 1, oct 2018
  3.1.4 My solution to Midterm 1, oct 2018
  3.1.5 Final exam practice exam 1
  3.1.6 Final exam practice exam 2

3.1.1 Midterm 1, oct 2001

PDF

3.1.2 My solution to Midterm 1, oct 2001

   3.1.2.1 Problem 1
   3.1.2.2 Problem 2
   3.1.2.3 Problem 3
   3.1.2.4 Problem 4
PDF (letter size)
PDF (legal size)

3.1.2.1 Problem 1

Obtain impulse and step response for LTI described by (a) h[n]=(12)nu[n] (b) h(t)=e12tu(t)

solution

Part a Let x[n]=δ[n], hence y[n]=δ[n]h[n]=k=δ[k]h[nk]

But δ[k]=0 for all k except when k=0. Hence the above reduces to y[n]=h[n]=(12)nu[n]

Let x[n]=u[n], hencey[n]=u[n]h[n]=k=h[k]x[nk]

Folding x[n], we see that for n<0 then there no overlap with h[n]. Hence y[n]=0 for n<0. As x[n] is shifted to the right, then the convolution sum becomes y[n]=k=0nh[k]n0=k=0n(12)k

This is the partial sum, given by a1+n1a1 where a=12<1k=0n(12)k=(12)1+n1121=(12)1+n112=22(2)n1(2)=22n

Thereforey[n]={22nn00n<0

Part b Let x(t)=δ(t), hencey(t)=u(t)h(t)=x(τ)h(tτ)dτ=δ(t)h(tτ)dτ=h(t)=e0.5t

Let x(t)=u(t), hencey(t)=u(t)h(t)=x(tτ)h(τ)dτ

Folding u(t), we see that for t<0 then there no overlap with h(τ)=e0.5τu(τ). Hence y(t)=0 for t<0. As u[n] is shifted to the right, then the convolution becomes y[n]=0th(τ)dτt>0=0te0.5τdτ=(e0.5τ0.5)0t=2(e0.5t1)=22e0.5t=2(1e0.5t)

Hence

y(t)={2(1e0.5t)t00t<0

3.1.2.2 Problem 2

Given the frequency response of LTI system H(Ω) for the following input signal, find the steady state expression of the output signal. (a) x[n]=2cos(π6n+π5) (b) x[n]=5sin(π3n+π8)

solution

Part a x[n]=2cos(π6n+π5) To find the fundamental period, cos(π6n+π5)=cos(π6(n+N)+π5)=cos((π6n+π5)+π6N). Hence need π6N=m2π or mN=112. Hence. N=12. Therefore Ω0=2π12 And the input is x[n]=2cos(Ω0n+π5). Hence the output isy[n]=2|H(Ω0)|cos(Ω0n+π5+argH(Ω0))

Part b x[n]=5sin(π3n+π8) To find the fundamental period, sin(π3n+π8)=sin(π3(n+N)+π8)=sin(π3n+π8+π3N). Hence need π3N=m2π or mN=16. Hence. N=6. ThereforeΩ0=2π6 And the input is x[n]=5sin(Ω0n+π8). Hence the output isy[n]=5|H(Ω0)|sin(Ω0n+π8+argH(Ω0))

3.1.2.3 Problem 3

Compute Fourier series coeff. for the following signals. (a) x[n]=2sin(π3n+π2)+3cos(π6n+π5). (b) x(t)=ej2πt+ej3πt

solution

Part a For discrete periodic signal, the Fourier series coeff. ak is given by(1)x[n]=k=akejk(2πN)n(2)ak=1Nn=0N1x[n]ejk(2πN)n

In this problem

x[n]=2sin(π3n+π2)+3cos(π6n+π5) To find the common fundamental period. sin(π3n+π2)=sin(π3(n+N)+π2)=sin((π3n+π2)+π3N). Hence π3N=m2π or mN=16. hence N=6 for first signal. For second signal cos(π6n+π5) we obtain π6N=m2π or mN=112 or N=12. hence the least common multiplier between 6 and 12 is N=12. Therefore Ω0=2π12 Hence (2) becomesak=112n=011x[n]ejk(2π12)n=112n=011x[n]ejkΩ0n

But instead of using the above formula, an easier way is to rewrite x[n]  using Euler relation and use (1) to read off ak directly from the result. Writing x[n] in terms of the fundamental frequency Ω0 givesx[n]=2sin(2Ω0n+π2)+3cos(Ω0n+π5)=2(ej(2Ω0n+π2)ej(2Ω0n+π2)2j)+3(ej(Ω0n+π5)+ej(Ω0n+π5)2)=22j(ejπ2ej2Ω0nejπ2ej2Ω0n)+32(ejπ5ejΩ0n+ejπ5ejΩ0n)=1jejπ2ej2Ω0n1jejπ2ej2Ω0n+32ejπ5ejΩ0n+32ejπ5ejΩ0n

Now we can read the Fourier coefficients by comparing the above to Eq(1).

This gives for k=2,a2=1jejπ2 and for k=2,a2=1jejπ2 and for k=1,a1=32ejπ5 and for k=1,a1=32ejπ5a1=32ejπ5a1=32ejπ5a2=1jejπ2a2=1jejπ2

But ejπ2=jsinπ2=j and ejπ2=jsinπ2=j. Hence the above becomesa1=32ejπ5a1=32ejπ5a2=1jj=1a2=1j(j)=1

And ak=0 for all other k.

Part b For continuos time periodic signal x(t), the Fourier series coeff. ak is given byx(t)=k=akejkω0tak=1TTx(t)ejkω0tdt

In this problemx(t)=ej2πt+ej3πt The period of ej2πt is 1 and the period of ej3πt is 23. Hence least common multiplier is T0=2 seconds. ω0=2π2=π rad/sec. Both of the above terms can now be written x(t)=ej4πT0t+ej6πT0t=ej2ω0t+ej3ω0t

Comparing the above tox(t)=k=akejkω0t Shows that  for k=2,ak=1 and for k=3,ak=1 and ak=0 for all other k.

3.1.2.4 Problem 4

Given the magnitude and phase profile of this filter, find impulse response.

solution

We are given H(Ω) and need to find h[n]. i.e. the inverse Fourier transform h[n]=12πππH(Ω)ejΩndΩ=12πππ|H(Ω)|ejargH(Ω)ejΩndΩ

But |H(Ω)|=1 and argH(Ω)=Ω as given. The above reduces toh[n]=12ππ4π4ejΩejΩndΩ=12ππ4π4ejΩ(1n)dΩ=(12π)1j(1n)[ejΩ(1n)]π4π4=(12π)1j(1n)(ejπ4(1n)ejπ4(1n))=1π1(1n)(ejπ4(1n)ejπ4(1n)2j)=1π(1n)sin(π4(1n))=1π(1n)sin(π4(n1))=1π(n1)sin(π4(n1))

3.1.3 Midterm 1, oct 2018

PDF

3.1.4 My solution to Midterm 1, oct 2018

   3.1.4.1 Problem 1
   3.1.4.2 Problem 2
   3.1.4.3 Problem 3
PDF (letter size)
PDF (legal size)

3.1.4.1 Problem 1

Given the discrete time system with input x[n] and impulse response h[n] obtain the output sequence y[n] by applying discrete convolution.

x[n]=[1,0,1,1],h[n]=[1,1,1,1]. Both sequences are positive and start with n=0 position.

Solutiony[n]=x[n]h[n] Folding x[n]. When n=0,y[0]=1. When n=1, then y[n]=(0)(1)+(1)(1)=1. When n=2,y[n]=(1)(1)+(0)(1)+(1)(1)=2. When n=3,y[n]=(1)(1)+(1)(1)+(0)(1)+(1)(1)=111=1. When n=4,y[n]=1+1=2. When n=5,y[n]=1+1=0, when n=6,y[6]=1. When n>6,y[n]=0.

Hence y[n]=[1,1,2,1,2,0,1]

3.1.4.2 Problem 2

The impulse response of LTI system is given by h(t)=u(t)2u(t1)+u(t2) where u(t) is unit step signal. Determine the output of this y(t) where its input x(t) is given as x(t)=etu(t+1).

Solution

By folding x(t). See key solution. Used same method.

3.1.4.3 Problem 3

A discrete periodic sequence is given as x[n]=2sin(3π8n+π2)+cos(π4n+π3). (a) Find fundamental frequency of this signal. (b) Fourier series coefficients for x[n]. (c) if x[n]=cos(π4n+π3) is an input to system with frequency response H(Ω)=1ejΩ2+e2jΩ, obtain expression for y[n]

Solution

Part a For sin(3π8n+π2), we need 38πN=m2π or mN=316. Since relatively prime, hence N=16. For cos(π4n+π3) we need π4N=m2π or mN=18. Hence N=8. The least common multiplier is 16. Hence fundamental period is N=16. Therefore Ω0=2πN=π8.

Part b Since input is periodic, then(1)x[n]=k=akejkΩ0n By writing the input, using Euler relation, we can compare the input to the above and read off ak. First we rewrite the input using common Ω0 asx[n]=2sin(3Ω0n+π2)+cos(2Ω0n+π3) Hencex[n]=2(ej(3Ω0n+π2)ej(3Ω0n+π2)2j)+ej(2Ω0n+π3)+ej(2Ω0n+π3)2=1jej(3Ω0n+π2)1jej(3Ω0n+π2)+12ej(2Ω0n+π3)+12ej(2Ω0n+π3)=1jejπ2ej3Ω0n1jejπ2ej3Ω0n+12ejπ3ej2Ω0n+12ejπ3ej2Ω0n

But ejπ2=jsinπ2=j and ejπ2=jsinπ2=j and ejπ3=cos(π3)+jsin(π3)=123j+12 and ejπ3=cos(π3)jsin(π3)=12123j. Hence the above simplifies to(2)x[n]=ej3Ω0n+ej3Ω0n+14(1+3j)ej2Ω0n14(13j)ej2Ω0n Comparing (2) to (1) shows thata3=1a3=1a2=12ejπ3=14(1+3j)a2=12ejπ3=14(13j)

Part c The output is(1)y[n]=|H(Ω)|Ω=π4cos(π4n+π3+argH(Ω)Ω=π4) But|H(Ω)|=|1ejΩ2+e2jΩ|=|1ejΩ||2+e2jΩ|=(1cosΩ)2+sin2Ω(2+cos2Ω)2+sin2(2Ω)

When Ω=π4 the above becomes|H(π4)|=(1cos(π4))2+sin2(π4)(2+cos(π2))2+sin2(π2)=(1cos(π4))2+sin2(π4)4+1=322+125=225=0.34228

And argH(Ω)=arg1ejΩ2+e2jΩ=arg(1cosΩ)+jsinΩ(2+cos(2Ω))jsin(2Ω)=arctan(sinΩ1cosΩ)arctan(sin(2Ω)2+cos(2Ω))

When Ω=π4 the above becomesargH(π4)=arctan(sin(π4)1cos(π4))arctan(sin(π2)2+cos(π2))=arctan(sin(π4)1cos(π4))arctan(12)=arctan(sin(π4)1cos(π4))+arctan(12)=arctan(2.4142)+0.46365=1.1781+0.46365=1.6418 rad

Hence (1) becomesy[n]=0.3423cos(π4n+π3+1.6418)

3.1.5 Final exam practice exam 1

PDF

3.1.6 Final exam practice exam 2

PDF