1.27 Lecture 25. Tuesday November 18 2014

  1.27.1 Handout, Observability summary
  1.27.2 Lecture: Canonical decomposition theorem

1.27.1 Handout, Observability summary

pict

pict

1.27.2 Lecture: Canonical decomposition theorem

We already talked about algebraic observability (observability matrix). We also talked about the observer design. Now we want to talk about physical observability. Starting with LTV system

\begin{align*} x^{\prime }\left ( t\right ) & =A\left ( t\right ) x\left ( t\right ) +B\left ( t\right ) u\left ( t\right ) \\ y\left ( t\right ) & =C\left ( t\right ) x\left ( t\right ) +D\left ( t\right ) u\left ( t\right ) \end{align*}

Formal definition of physical observability: System is observable at \(t_{0}\) if the following condition holds: With \(x\left ( t_{0}\right ) =x^{0}\) unknown, suppose \(u\left ( t\right ) \) and \(y\left ( t\right ) \) are known, then there exist time \(t_{1}\geq t_{0}\) such that \(x\left ( t_{0}\right ) \) can be determined from knowing \(u\left ( t\right ) \) and \(y\left ( t\right ) \) over \(\left [ t_{0},t_{1}\right ] \). This is true for any \(x\left ( t_{0}\right ) \).

pict

Definition from Chen book: pair \(\left ( A\left ( t\right ) ,C\left ( t\right ) \right ) \) is observable at \(t_{0}\) iff there exists time \(t_{1}>t_{0}\) such that the \(n\times n\) matrix \(W_{o}\left ( t_{0},t_{1}\right ) ={\displaystyle \int \limits _{t_{0}}^{t}} \Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) C\left ( \tau \right ) \Phi \left ( \tau ,t_{0}\right ) d\tau \) where \(\Phi \left ( t,\tau \right ) \,\ \)is the state transition matrix for \(x^{\prime }\left ( t\right ) =A\left ( t\right ) x\left ( t\right ) \) is nonsingular.

Controllability of the primal system equals the observability of the duel. If system is observable at \(t_{0}\) what about at \(t>t_{0}\)? The answer is not necessarily. What about for \(t<t_{0}\)? The answer is yes. We can always solve for \(x\left ( 0\right ) \)\begin{align*} y(t) & = C(t) \Phi (t,t_0) x^0+ \overbrace{C\left ( t\right ){\displaystyle \int \limits _{t_{0}}^{t}} \Phi \left ( t,\tau \right ) B\left ( \tau \right ) u\left ( \tau \right ) d\tau +D\left ( t\right ) u\left ( t\right ) }^{\text{not function of }x^{0}\text{ can be ignored}}\\ \tilde{y}(t) & = C(t) \Phi (t,t_0) x^0 \end{align*}

Pre-multiply by \(\Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) \) and integrate\[{\displaystyle \int \limits _{t_{0}}^{t}} \Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) \tilde{y}\left ( t\right ) d\tau =\overbrace{\left ({\displaystyle \int \limits _{t_{0}}^{t}} \Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) C\left ( \tau \right ) \Phi \left ( \tau ,t_{0}\right ) d\tau \right ) }^{W\left ( t_{0},t\right ) }x^{0}\] Since observable we can invert \(W\), hence \[ x^{0}=W^{-1}\left ( t_{0},t\right ){\displaystyle \int \limits _{t_{0}}^{t}} \Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) \tilde{y}\left ( t\right ) d\tau \] So system is observable iff \(W\) is non-singular for \(t>t_{0}\). This means rows of \(\Phi ^{T}\left ( \tau ,t_{0}\right ) C^{T}\left ( \tau \right ) \) are linearly independent.

Reader express state transition matrix for the duel system \(\left ( \tilde{A},\tilde{B},\tilde{C},\tilde{D}\right ) \) where \begin{align*} \tilde{A} & =-A^{T}\\ \tilde{B} & =-C^{T}\\ \tilde{C} & =B^{T}\\ \tilde{D} & =D \end{align*}

Hence, the duel system\begin{align*} \tilde{x}^{\prime }\left ( t\right ) & =-A^{T}\left ( t\right ) \tilde{x}\left ( t\right ) -C^{T}\left ( t\right ) u\left ( t\right ) \\ \tilde{y}\left ( t\right ) & =B^{T}\left ( t\right ) \tilde{x}\left ( t\right ) +D^{T}\left ( t\right ) u\left ( t\right ) \end{align*}

Now we will establish the relation between the system transfer matrix \(\Phi \) for the primal and the duel. For the primal, we have\[ \frac{d\Psi ^{-1}\left ( t\right ) }{dt}=-\Psi ^{-1}\left ( t\right ) A\left ( t\right ) \] Take the transpose of both sides gives\begin{equation} \frac{d\left [ \Psi ^{-1}\left ( t\right ) \right ] ^{T}}{dt}=-A^{T}\left ( t\right ) \left [ \Psi ^{-1}\left ( t\right ) \right ] ^{T} \tag{1} \end{equation} Now for the duel, we have\[ \frac{d\tilde{\Psi }\left ( t\right ) }{dt}=\tilde{A}\left ( t\right ) \tilde{\Psi }\left ( t\right ) \] However \(\tilde{A}\left ( t\right ) =-A^{T}\left ( t\right ) \) therefore the above becomes\begin{equation} \frac{d\tilde{\Psi }\left ( t\right ) }{dt}=-A^{T}\left ( t\right ) \tilde{\Psi }\left ( t\right ) \tag{2} \end{equation} Comparing LHS and RHS of (1) and (2) we see that\begin{equation} \left [ \Psi ^{-1}\left ( t\right ) \right ] ^{T}=\tilde{\Psi }\left ( t\right ) \tag{3} \end{equation} The above also mean that \[ \left [ \Psi ^{T}\left ( t\right ) \right ] ^{-1}=\tilde{\Psi }\left ( t\right ) \] Now taking the inverse of both sides\begin{equation} \Psi ^{T}\left ( t\right ) =\tilde{\Psi }^{-1}\left ( t\right ) \tag{4} \end{equation} (3) and (4) is all what we need to establish that \begin{align*} \tilde{\Phi }\left ( t,\tau \right ) & =\tilde{\Psi }\left ( t\right ) \tilde{\Psi }^{-1}\left ( \tau \right ) \\ & =\left [ \Psi ^{T}\left ( t\right ) \right ] ^{-1}\Psi ^{T}\left ( \tau \right ) \\ & =\left [ \Psi ^{-1}\left ( t\right ) \right ] ^{T}\Psi ^{T}\left ( \tau \right ) \\ & =\left [ \Psi \left ( \tau \right ) \Psi \left ( t\right ) ^{-1}\right ] ^{T}\\ & =\Phi ^{T}\left ( \tau ,t\right ) \end{align*}

Hence\begin{equation} \fbox{$\tilde{\Phi }\left ( t,\tau \right ) =\Phi ^T\left ( \tau ,t\right ) $} \tag{5} \end{equation} Now we describe the short cut method to determine observability. For \(n-1\) differential system\begin{align*} L_{0}\left ( t\right ) & =C\left ( t\right ) \\ L_{k+1}\left ( t\right ) & =L_{k}\left ( t\right ) A\left ( t\right ) +\frac{d}{dt}L_{k}\left ( t\right ) \end{align*}

For \(k=0\cdots n-2\). Then the system is observable at \(t_{0}\) iff there exist \(t_{1}>t_{0}\) such that \(\rho \left [ L\left ( t\right ) \right ] =\rho \begin{pmatrix} L_{0}\left ( t_{1}\right ) \\ L_{1}\left ( t_{1}\right ) \\ \vdots \\ L_{n-1}\left ( t_{1}\right ) \end{pmatrix} =n\)

Example: \(A\left ( t\right ) =\begin{pmatrix} 0 & 1 & t\\ t^{2} & -t & e^{t}\\ 1 & -2 & 1 \end{pmatrix} ,C\left ( t\right ) =\begin{pmatrix} 1 & t & e^{-t}\end{pmatrix} \) \begin{align*} L_{0}\left ( t\right ) & =\begin{pmatrix} 1 & t & e^{-t}\end{pmatrix} \\ L_{1}\left ( t\right ) & =\begin{pmatrix} 1 & t & e^{-t}\end{pmatrix}\begin{pmatrix} 0 & 1 & t\\ t^{2} & -t & e^{t}\\ 1 & -2 & 1 \end{pmatrix} +\begin{pmatrix} 0 & 1 & -e^{-t}\end{pmatrix} =\begin{pmatrix} e^{-t}+t^{3} & 2-t^{2}-2e^{-t} & t+te^{t}\end{pmatrix} \\ L_{2}\left ( t\right ) & =\begin{pmatrix} e^{-t}+t^{3} & 2-t^{2}-2e^{-t} & t+te^{t}\end{pmatrix}\begin{pmatrix} 0 & 1 & t\\ t^{2} & -t & e^{t}\\ 1 & -2 & 1 \end{pmatrix} +\begin{pmatrix} -e^{-t}+3t^{2} & -2t+2e^{-t} & 1+e^{t}+te^{t}\end{pmatrix} =\\ & \begin{pmatrix} t-e^{-t}-t^{2}\left ( 2e^{-t}+t^{2}-2\right ) +te^{t}+3t^{2} & 3e^{-t}-4t+t\left ( 2e^{-t}+t^{2}-2\right ) -2te^{t}+t^{3} & t+e^{t}+t\left ( e^{-t}+t^{3}\right ) -e^{t}\left ( 2e^{-t}+t^{2}-2\right ) +2te^{t}+1 \end{pmatrix} \end{align*}

Hence \[ L=\begin{pmatrix} 1 & t & e^{-t}\\ e^{-t}+t^{3} & 2-t^{2}-2e^{-t} & t+te^{t}\\ t-e^{-t}-t^{2}\left ( 2e^{-t}+t^{2}-2\right ) +te^{t}+3t^{2} & 3e^{-t}-4t+t\left ( 2e^{-t}+t^{2}-2\right ) -2te^{t}+t^{3} & t+e^{t}+t\left ( e^{-t}+t^{3}\right ) -e^{t}\left ( 2e^{-t}+t^{2}-2\right ) +2te^{t}+1 \end{pmatrix} \] The rank of the above must be \(3\) for observable system.

Canonical decomposition theorem:

We want minimal realization. Canonical transformation: System \({\displaystyle \sum } =\left ( A,B,C,D\right ) \) can be transformed to equivalent system via non-singular matrix \(T\).\begin{align*} A^{\ast } & =TAT^{-1}\\ B^{\ast } & =TB\\ C^{\ast } & =CT^{-1}\\ D^{\ast } & =D \end{align*}

Which has the following structure. \(A^{\ast }\) is block structure of the form\[ A^{\ast }=\begin{pmatrix} A_{c\bar{o}}^{\ast } & A_{12}^{\ast } & A_{13}^{\ast }\\ 0 & A_{co}^{\ast } & A_{23}^{\ast }\\ 0 & 0 & A_{\bar{c}}^{\ast }\end{pmatrix} ,B^{\ast }=\begin{pmatrix} B_{c\bar{o}}^{\ast }\\ B_{co}^{\ast }\\ 0 \end{pmatrix} ,C^{\ast }=\begin{pmatrix} 0 & C_{co}^{\ast } & C_{\bar{c}}^{\ast }\end{pmatrix} \] \(A_{c\bar{o}}^{\ast }\) means controllable but not observable, \(A_{co}^{\ast }\) means controllable and observable and \(A_{\bar{c}}^{\ast }\) means not controllable.

Hence, since \(x^{\ast }=Tx\), then the \({\displaystyle \sum ^{\ast }} \) is\begin{align*} x^{\ast \prime } & =A^{\ast }x^{\ast }+B^{\ast }u\left ( t\right ) \\ y & =C^{\ast }x^{\ast }+D^{\ast }u\left ( t\right ) \end{align*}

So the controllable and observable part is \({\displaystyle \sum _{co}} =\left ( A_{co}^{\ast },B_{co}^{\ast },C_{co}^{\ast }\right ) \). And The not controllable and not observable part is \({\displaystyle \sum _{\bar{c}\bar{o}}} =\left ( A_{\bar{c}\bar{o}}^{\ast },0,C_{\bar{c}}^{\ast }\right ) \). Notice that \[ H_{co}^{\ast }\left ( s\right ) =H\left ( s\right ) \] Minimal realization is both controllable and observable.

Original \(A,B,C,D\) can be anything, and we can always find \(T\) to do the above transformation.