If the transfer function H\left ( s\right ) is proper, then is it realizable. (SISO for now). Reminder: Need to show this for the general case.
Proof: We must find {\displaystyle \sum } \left ( A,B,C,D\right ) such that H_{\ast }\left ( s\right ) =H\left ( s\right ) where H_{\ast }\left ( s\right ) is the transfer function obtained from {\displaystyle \sum } \left ( A,B,C,D\right ) and H\left ( s\right ) is the transfer function we are given. We propose A=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 1\\ -\alpha _{0} & -\alpha _{1} & -\alpha _{2} & \cdots & -\alpha _{n-1}\end{pmatrix} . Let H\left ( s\right ) =\gamma +\frac{\beta _{n-1}s^{n-1}+\beta _{n-2}s^{n-2}+\cdots +\beta _{0}}{s^{n}+\alpha _{n-1}s^{n-1}+\cdots +\alpha _{0}} and propose B=\begin{pmatrix} 0\\ 0\\ \vdots \\ 0\\ 1 \end{pmatrix} and propose C=\begin{pmatrix} \beta _{0} & \beta _{1} & \cdots & \beta _{n-1}\end{pmatrix} and D=\left [ \gamma \right ] , now we need to show that H_{\ast }\left ( s\right ) =H\left ( s\right ) using Mason rule.
Reader: Use Mason rule to show that this realization works. Now what about MIMO? Assume we are given H\left ( s\right ) =\begin{pmatrix} H_{11}\left ( s\right ) & H_{12}\left ( s\right ) \\ H_{21}\left ( s\right ) & H_{22}\left ( s\right ) \end{pmatrix} . We can do each on its own, then need to ”patched” to show that the matrix of them all work. Example using 2\times 2.
If each H_{ij}\left ( s\right ) is proper, let {\displaystyle \sum \limits _{ij}} =A_{ij},B_{ij},C_{ij},D_{ij} be realization for H_{ij}\left ( s\right ) . Note each A_{ij} can be different size. Propose A=\begin{pmatrix} A_{11} & 0 & 0 & 0\\ 0 & A_{12} & 0 & 0\\ 0 & 0 & A_{21} & 0\\ 0 & 0 & 0 & A_{22}\end{pmatrix} and B=\begin{pmatrix} B_{11} & 0\\ B_{12} & 0\\ 0 & B_{21}\\ 0 & B_{22}\end{pmatrix} and C=\begin{pmatrix} C_{11} & C_{12} & 0 & 0\\ 0 & 0 & C_{21} & C_{22}\end{pmatrix} and D=\begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22}\end{pmatrix} . Now we claim \left ( A,B,C,D\right ) is realization of \begin{pmatrix} H_{11}\left ( s\right ) & H_{12}\left ( s\right ) \\ H_{21}\left ( s\right ) & H_{22}\left ( s\right ) \end{pmatrix} . We need to calculate \begin{align*} H_{\ast }\left ( s\right ) & =C\left ( sI-A\right ) ^{-1}B+D\\ & =\begin{pmatrix} C_{11} & C_{12} & 0 & 0\\ 0 & 0 & C_{21} & C_{22}\end{pmatrix} \left ( sI-\begin{pmatrix} A_{11} & 0 & 0 & 0\\ 0 & A_{12} & 0 & 0\\ 0 & 0 & A_{21} & 0\\ 0 & 0 & 0 & A_{22}\end{pmatrix} ^{-1}\right ) \begin{pmatrix} B_{11} & 0\\ B_{12} & 0\\ 0 & B_{21}\\ 0 & B_{22}\end{pmatrix} +\begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22}\end{pmatrix} \end{align*}
Reader: The above reduces to H_{\ast }\left ( s\right ) =\begin{pmatrix} C_{11}\left ( sI-A_{11}\right ) ^{-1}B_{11}+D_{11} & C_{12}\left ( sI-A_{12}\right ) ^{-1}B_{12}+D_{12}\\ C_{21}\left ( sI-A_{21}\right ) ^{-1}B_{21}+D_{21} & C_{22}\left ( sI-A_{22}\right ) ^{-1}B_{22}+D_{22}\end{pmatrix}
Reader: Propose realization with H\left ( s\right ) that is 3\times 2. i.e. \begin{pmatrix} H_{11}\left ( s\right ) & H_{12}\left ( s\right ) \\ H_{21}\left ( s\right ) & H_{22}\left ( s\right ) \\ H_{31}\left ( s\right ) & H_{32}\left ( s\right ) \end{pmatrix} \,. Try it. What should A,B,C,D look like? Note: Even though H_{ij}\left ( s\right ) might each be minimal, when we obtain the realization, it might no longer be minimal. Some realization are ”nicer” than others for analysis and design.
Motivation example: A=\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ -\alpha _{0} & -\alpha _{1} & -\alpha _{2}\end{pmatrix} ,b=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} ,C=\begin{pmatrix} \beta _{0} & \beta _{1} & \beta _{2}\end{pmatrix} . When we add feedback, we ask what is the effect of feedback? This system is nice to study feedback. We often add feedback to improve time performance. u\left ( t\right ) =k_{1}x_{1}+k_{2}x_{2}+k_{3}x_{3}+v where v is new input. We can pick k_{i}. The closed loop becomes
x^{\prime }=\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ -\alpha _{0} & -\alpha _{1} & -\alpha _{2}\end{pmatrix} +\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \left ( k_{1}x_{1}+k_{2}x_{2}+k_{3}x_{3}+v\right )