Fourier Transform formulas \begin{align*} \hat{u}(k) & = \int _{-\infty }^{\infty } u(x) e^{-i k x} \,dx \\ u(x) & = \frac{1}{2\pi }\int _{-\infty }^\infty \hat{u}(k) e^{i k x} \,dk \\ \hat{u}(k) & = \hat{G}(k) \hat{h}(k)\\ u(x) = g(x) h(x) &\Longleftrightarrow \hat{g}(k) \ast \hat{h}(k) = \hat{u}(k) = \int _{-\infty }^\infty \hat{g}(k-\tau ) \hat{h}(\tau ) \,d\tau \\ \hat{u}(k) = \hat{g}(k) \hat{h}(k) &\Longleftrightarrow g(x) \ast h(x) = u(x) = \int _{-\infty }^\infty g(x-\tau ) h(\tau ) \,d\tau \\ e^{i x d}u(x) & \Longleftrightarrow \hat{u}(k-d)\\ u(x-a) & \Longleftrightarrow e^{-i a k} \hat{u}(k)\\ \frac{du}{dx} & \Longleftrightarrow i k \hat{u}(k)\\ \int _a^x u(x) \,dx & \Longleftrightarrow \frac{ \hat{u}(k)}{i k} + c \delta (k) \end{align*}
Fourier Series formulas \begin{align*} f(x) &= a_0 + \sum \limits _{k=1}^\infty \left ( a_k \cos (k x) + b_k \sin (k x) \right ) \\ a_0 &= \frac{1}{2 \pi } \int _{-\pi }^\pi f(x) \, dx \\ a_k &= \frac{1}{\pi } \int _{-\pi }^\pi \cos (k x) f(x) \, dx = c_k + c_{_k}\\ b_k &= \frac{1}{\pi } \int _{-\pi }^\pi \sin (k x) f(x) \, dx = i(c_k - c_{-k}) \\ f(x) &= \sum \limits _{-\infty }^\infty c_k e^{i k x} \\ c_k &= \frac{1}{2 \pi } \int _{-\pi }^\pi f(x) e^{-i k x} \, dx \\ \text{square wave} &\stackrel{\text{Fourier series}}{\longleftrightarrow } \sum _{k=1,3,5,\dots }^{\infty } \frac{4}{\pi k} \sin (kx) \\ f(x) &\stackrel{\text{Fourier series}}{\longleftrightarrow } \sum _{-\infty }^\infty c_k e^{ikx} \\ f(x) &\stackrel{\text{Fourier transform}}{\longleftrightarrow } \frac{1}{2\pi } \int _{-\infty }^{\infty } \hat{f}(\omega ) e^{i\omega x} \hspace{2mm} \text{where} \hspace{2mm} \omega =\frac{2\pi }{T}k\\ \delta (x) &\stackrel{\text{Fourier series}}{\longleftrightarrow } \frac{1}{2\pi }+ \frac{1}{\pi } \left (\cos x+\cos 2x+\cos 3x + \dots \right ) \\ x &\stackrel{\text{Fourier series}}{\longleftrightarrow } 2 \left (\frac{\sin x}{1} - \frac{\sin 2x}{2} +\frac{\sin 3x}{3} - \dots \right )\\ x &\stackrel{\text{Fourier series}}{\longleftrightarrow } 2 \left (\frac{\sin x}{1} - \frac{\sin 2x}{2} +\frac{\sin 3x}{3} - \dots \right )\\ |\sin (x)| &\stackrel{\text{Fourier series}}{\longleftrightarrow } \begin{cases} a_0 &= \frac{2}{\pi }\\ a_k &= \begin{cases} 0, & \text{k odd}.\\ \frac{4}{\pi } \left ( \frac{1}{1-k^2} \right ), & \text{k even}. \end{cases} \end{cases}\\ \hat{H}(k) = \hat{f}(k) \hat{g}(k) &\stackrel{F^{-1}}{\longleftrightarrow } H(x) = f(x) \circledast g(x) = \int _{-infty}^{\infty } f(\tau ) g(x-\tau ) \,d\tau \\ u(x) &= f(x) \circledast g(x) \\ \hat{u}(k) &= \hat{f}(k) \hat{g}(k) \\ \end{align*}
1. When period \(T\) is not \(2 \pi \) replace \(k\) by \(\frac{2 \pi }{T} k\) in all formulas for Fourier series. 2. Plancherel formula \(2\pi \int _{-\infty }^\infty |f(x)|^2 \, dx = \int _{-\infty }^\infty | \hat{f}(k) |^2 \,dk\) 3. Parseval’s formula \( \int _{-\pi }^{\pi } |f(x)|^2 \,dx = 2\pi \sum \limits _{k=1}^\infty |c_k|^2\) 4. Parseval’s formula again \(2\pi a_0^2+\pi \left (a_1^2+b_1^2+a_2^2+b_2^2+\dots \right ) = \int _{-\infty }^\infty f^2(x) \,dx\) 5. Inner products \( 2\pi \int _{-\infty }^\infty f(x)\bar{g}(x) \, dx = \int _{-\infty }^\infty \hat{f}(k) \bar{\hat{g}}(k) \, dk\) 6. integration by parts \(\int u v' = [uv]- \int u' v\) so pick the one that is easy to differentiate for \(u\) and the one that is easy to integrate for \(v\). 7. properties of odd and even functions Let \(o,e\) be odd and even functions, then \(e+e=e, o+o=o, e \times e=e, o \times o=e, o \times e=o, \frac{e}{e}=e, \frac{e}{o}=o\) 8. trig identities \begin{equation*} \begin{aligned} \sin ^2(x) &= \frac{1}{2}-\frac{1}{2}\cos (2x)\\ \cos ^2(x) &= \frac{1}{2}+\frac{1}{2}\cos (2x)\\ \sin ^3(x) &= \frac{3}{4}\sin (x) - \frac{1}{4}\sin (3x)\\ \cos ^3(x) &= \frac{3}{4}\cos (x) -\frac{1}{2}\cos (2x)\\ \sin (2x) &= 2\sin (x)\cos (x)\\ \cos (2x) &= \cos ^2(x)-\sin ^2(x)\\ &=1-2\sin ^2(x)\\ &=2\cos ^2(x)-1\\ \tan (2x) &=\frac{2\tan (x)}{1-\tan ^2(x)}\\ \sin (A \pm B) &= \sin (A)\cos (B)\pm \cos (A)\cos (B)\\ \cos (A \pm B) &= \cos (A)\sin (B)\mp \sin (A)\sin (B)\\ \int \cos ^n(x) \,dx &= \frac{\cos ^{n-1}(x) \sin (x)}{n}+ \frac{n-1}{n} \int \cos ^{n-2} \,dx\\ &= \frac{1}{2} \cos x \sin x + \frac{x}{2} \hspace{5mm} \text{n even}\\ &= \frac{1}{3} \cos ^2x \sin x + \frac{2}{3} \sin x \hspace{5mm} \text{n odd}\\ \int \sin ^n(x) \,dx &= \frac{-\sin ^{n-1}(x) \cos (x)}{n}+ \frac{n-1}{n} \int \sin ^{n-2} \,dx\\ &= \frac{-1}{2} \sin x \cos x + \frac{x}{2} \hspace{5mm} \text{n even}\\ &= \frac{-1}{3} \sin ^2x \cos x - \frac{2}{3} \cos x \hspace{5mm} \text{n odd}\\ \int x^n e^{ax} \,dx &= \frac{1}{a} \left ( x^n e^{ax} - n \int x^{n-1} e^{ax} \,dx \right )\\ \end{aligned} \end{equation*} 9. exp/trig \begin{equation*} \begin{aligned} \sin (x) &= \frac{e^{i\theta }-e^{-i\theta }}{2i}\\ \cos (x) &= \frac{e^{i\theta }+e^{-i\theta }}{2}\\ re^{i\theta } &= r \left ( \cos (\theta ) + i \sin (\theta ) \right ) \\ \ln (r e^{i\theta }) &= \ln (r) + i\theta + 2 k \pi i \\ F(e^{-\frac{x^2}{2}}) &=\int _{-\infty }^{\infty } e^{-\frac{x^2}{2}} e^{-i k x} \,dx = e^{-\frac{k^2}{2} \sqrt{2\pi }}\\ F(e^{-{x^2}}) &= e^{-\frac{k^2}{4} \sqrt{\pi }}\\ \int _0^\infty e^{-x^2} \,dx &= \frac{\sqrt{\pi }}{2} \\ \int _{-\infty }^\infty e^{-x^2} \,dx &= \sqrt{\pi } \\ \end{aligned} \end{equation*}
Laplace
misc. items
references: