Processing math: 100%

2.32 Cheat sheet

  2.32.1 Laplace Transforms for exam
  2.32.2 Partial fractions
  2.32.3 Final value
  2.32.4 Tracking
  2.32.5 Second order system

2.32.1 Laplace Transforms for exam




time Laplace



impulse \delta \left ( t\right ) 1



delayed impulse \delta \left ( t-a\right ) e^{-as}



unit step u\left ( t\right ) \frac{1}{s}



delayed unit impulse u\left ( t-a\right ) \frac{1}{s}e^{-as}



ramp t \frac{1}{s^{2}}



parabolic t^{2} \frac{2}{s^{3}}



tf\left ( t\right ) -F^{\prime }\left ( s\right )



scaled f\left ( at\right ) \frac{1}{a}F\left ( \frac{s}{a}\right )



e^{at}f\left ( t\right ) F\left ( s-a\right )



f\left ( t\right ) F\left ( s\right )



derivative f^{\prime }\left ( t\right ) sF\left ( s\right ) -f\left ( 0\right )



second derivative f^{\prime \prime }\left ( t\right ) s^{2}F\left ( s\right ) -sf\left ( 0\right ) -f^{\prime }\left ( 0\right )



integrator \int _{0}^{t}f\left ( \tau \right ) d\tau \frac{1}{s}F\left ( s\right )



delay in time f\left ( t-a\right ) u\left ( t-a\right ) e^{-as}F\left ( s\right )



convolution f\left ( t\right ) \circledast g\left ( t\right ) F\left ( s\right ) G\left ( s\right )



e^{-at}u\left ( t\right ) \frac{1}{s+a}



e^{-a\left \vert t\right \vert } \frac{2a}{a^{2}-s^{2}}



\left ( 1-e^{-at}\right ) u\left ( t\right ) \frac{a}{s\left ( s+a\right ) }



\sin \left ( at\right ) u\left ( t\right ) \frac{a}{s^{2}+a^{2}}



\cos \left ( at\right ) u\left ( t\right ) \frac{s}{s^{2}+a^{2}}



e^{-bt}\sin \left ( at\right ) u\left ( t\right ) \frac{a}{\left ( s+b\right ) ^{2}+a^{2}}



e^{-bt}\cos \left ( at\right ) u\left ( t\right ) \frac{s+b}{\left ( s+b\right ) ^{2}+a^{2}}



2.32.2 Partial fractions

1.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s+b\right ) } & =\frac{A}{\left ( s+a\right ) }+\frac{B}{\left ( s+b\right ) }\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s+b\right ) }\\ B & =\lim _{s\rightarrow -b}\frac{1}{\left ( s+a\right ) } \end{align*}
2.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s+b\right ) ^{2}} & =\frac{A}{\left ( s+a\right ) }+\frac{B}{\left ( s+b\right ) }+\frac{C}{\left ( s+b\right ) ^{2}}\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s+b\right ) ^{2}}\\ B & =\lim _{s\rightarrow -b}\frac{d}{ds}\left ( \frac{1}{\left ( s+a\right ) }\right ) \\ C & =\lim _{s\rightarrow -b}\frac{1}{\left ( s+a\right ) ^{2}} \end{align*}
3.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s^{2}+b\right ) } & =\frac{A}{\left ( s+a\right ) }+\frac{Bs+C}{\left ( s^{2}+b\right ) }\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s^{2}+b\right ) } \end{align*}

For B,C, expand now and compare coefficients (but there should be faster way)

2.32.3 Final value

Suppose F\left ( s\right ) =\frac{N\left ( s\right ) }{D\left ( s\right ) } is stable, then \lim _{t\rightarrow \infty }f\left ( t\right ) =\lim _{s\rightarrow 0}sF\left ( s\right )

F\left ( s\right ) is allowed to have only one pole at origin and still use FVT. But if F\left ( s\right ) has more than one pole at the origin, or unstable, we can’t use FVT to determine \lim _{t\rightarrow \infty }f\left ( t\right ) .

2.32.4 Tracking

\frac{E\left ( s\right ) }{R\left ( s\right ) }=\frac{1}{1+GH}. To have \lim _{t\rightarrow \infty }e\left ( t\right ) =0 when the input R\left ( s\right ) is step, we need to have integrator in G\left ( s\right ) H\left ( s\right ) . Since we want GH to be very large for s=0. And integrator is \frac{1}{s}. If the input is ramp t, then we need \frac{1}{s^{2}} in GH. If the input is t^{2} then we need \frac{1}{s^{3}} in the controller. and so on.

2.32.5 Second order system

G\left ( s\right ) =\frac{\omega _{n}^{2}}{s^{2}+2\zeta \omega _{n}s+\omega _{n}^{2}}, y_{step}\left ( t\right ) =1-\frac{e^{-\zeta \omega _{n}t}}{\sqrt{1-\zeta ^{2}}}\left ( \sin \omega _{n}\sqrt{1-\zeta ^{2}}t+\phi \right ) where \phi =\cos ^{-1}\zeta . Maximum overshoot is e^{\frac{-\pi \zeta }{\sqrt{1-\zeta ^{2}}}}. Resonance frequency \omega _{r}=\omega _{n}\sqrt{1-2\zeta ^{2}}, and \left \vert G\left ( \omega _{r}\right ) \right \vert =\frac{1}{2\zeta \sqrt{1-\zeta ^{2}}} l.3981 — TeX4ht warning — “SaveEverypar’s: 2 at “begindocument and 3 “enddocument —