Let the input impedance be Z_{in} and the output impedance be Z_{out}, then Z_{out}=R_{2}||Z_{c_{1}}
Therefore Z_{out}=\frac{R_{2}Z_{c}{}_{1}}{Z_{c}{}_{1}+R_{2}}
Simplifying gives Z_{in}=\frac{R_{1}\left ( Z_{c}{}_{1}+R_{2}\right ) +R_{2}Z_{c}{}_{1}}{Z_{c}{}_{1}+R_{2}}
Hence the transfer function is \fbox{$G\left ( s\right ) =\frac{V_2\left ( s\right ) }{V_1\left ( s\right ) }=\frac{R_2}{\left ( R_1+R_2\right ) +R_2R_1Cs}$}
F\left ( s\right ) =\frac{1}{\left ( s+2\right ) ^{4}}. Using the Laplace transform property\begin{equation} F\left ( s-a\right ) \Longleftrightarrow e^{at}f\left ( t\right ) \tag{1} \end{equation}
F\left ( s\right ) =\frac{1}{s^{3}+5s^{2}+8s+4}. Using the computer, the factors are first found s^{3}+5s^{2}+8s+4=\left ( s+1\right ) \left ( s+2\right ) ^{2}
Multiplying both sides by \left ( s+2\right ) ^{2} and evaluating at s=-2 gives\begin{align*} C & =\frac{1}{\left ( s+1\right ) _{s=-2}}\\ C & =-1 \end{align*}
Therefore (1) now becomes\begin{align*} \frac{1}{\left ( s+1\right ) \left ( s+2\right ) ^{2}} & =\frac{1}{\left ( s+1\right ) }+\frac{B}{\left ( s+2\right ) }-\frac{1}{\left ( s+2\right ) ^{2}}\\ & =\frac{\left ( s+2\right ) ^{2}+B\left ( s+2\right ) \left ( s+1\right ) -\left ( s+1\right ) }{\left ( s+1\right ) \left ( s+2\right ) ^{2}}\\ & =\frac{2B+3s+Bs^{2}+3Bs+s^{2}+3}{\left ( s+1\right ) \left ( s+2\right ) ^{2}} \end{align*}
Comparing numerator of RHS and LHS gives 1=\left ( 2B+3\right ) +\left ( 3+3B\right ) s+\left ( B+1\right ) s^{2}
F\left ( s\right ) =\frac{7s^{2}+48s+62}{s^{3}+7s^{2}+10s}. The denominator can be written as s\left ( s^{2}+7s+10\right ) which is now factored to s\left ( s+2\right ) \left ( s+5\right ) . Applying partial fractions on this gives gives\begin{align*} F\left ( s\right ) & =\frac{7s^{2}+48s+62}{s\left ( s+2\right ) \left ( s+5\right ) }\\ & =\frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+5} \end{align*}
Hence\begin{align*} A & =\lim _{s\rightarrow 0}\frac{7s^{2}+48s+62}{\left ( s+2\right ) \left ( s+5\right ) }=\frac{62}{10}\\ B & =\lim _{s\rightarrow \left ( -2\right ) }\frac{7s^{2}+48s+62}{s\left ( s+5\right ) }=\frac{7\left ( 4\right ) +48\left ( -2\right ) +62}{-2\left ( -2+5\right ) }=1\\ C & =\lim _{s\rightarrow \left ( -5\right ) }\frac{7s^{2}+48s+62}{s\left ( s+2\right ) }=\frac{7\left ( 25\right ) +48\left ( -5\right ) +62}{-5\left ( -5+2\right ) }=-\frac{1}{5} \end{align*}
Therefore F\left ( s\right ) =\frac{62}{10}\frac{1}{s}+\frac{1}{s+2}-\frac{1}{5}\frac{1}{s+5}
F\left ( s\right ) =\frac{10\left ( s+2\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) }e^{-s}. This is solved using time shifting property of Laplace transform, which says that\mathcal{L}\left \{ f\left ( t-a\right ) \right \} =e^{-as}F\left ( s\right )
Therefore (1) becomes\begin{align*} \frac{10\left ( s+2\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) } & =\frac{5}{s}-\frac{2}{\left ( s+1\right ) }+\frac{Cs+D}{\left ( s^{2}+4\right ) }\\ & =\frac{5\left ( s+1\right ) \left ( s^{2}+4\right ) -2\left ( s\right ) \left ( \left ( s^{2}+4\right ) \right ) +\left ( Cs+D\right ) \left ( s\right ) \left ( s+1\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) } \end{align*}
Or\begin{align*} 10\left ( s+2\right ) & =5\left ( s+1\right ) \left ( s^{2}+4\right ) -2\left ( s\right ) \left ( \left ( s^{2}+4\right ) \right ) +\left ( Cs+D\right ) \left ( s\right ) \left ( s+1\right ) \\ 10s+20 & =12s+sD+Cs^{2}+Cs^{3}+s^{2}D+5s^{2}+3s^{3}+20\\ & =s\left ( 12+D\right ) +20+s^{2}\left ( C+D+5\right ) +\left ( C+3\right ) s^{3} \end{align*}
Comparing coefficients gives\begin{align*} 12+D & =10\\ D & =-2 \end{align*}
And\begin{align*} 0 & =C+D+5\\ C & =-D-5\\ & =-3 \end{align*}
Therefore\begin{align} \frac{10\left ( s+2\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) } & =\frac{A}{s}+\frac{B}{\left ( s+1\right ) }+\frac{Cs+D}{\left ( s^{2}+4\right ) }\nonumber \\ & =\frac{5}{s}-\frac{2}{\left ( s+1\right ) }-\frac{3s+2}{\left ( s^{2}+4\right ) }\nonumber \\ & =\frac{5}{s}-\frac{2}{\left ( s+1\right ) }-3\frac{s}{\left ( s^{2}+4\right ) }-\frac{2}{\left ( s^{2}+4\right ) }\tag{3} \end{align}
Using tables, \mathcal{L}^{-1}\left ( \frac{s}{s^{2}+a^{2}}\right ) =\cos \left ( at\right ) , hence \mathcal{L}^{-1}\left ( \frac{s}{\left ( s^{2}+4\right ) }\right ) =\cos 2t. Also, from tables \mathcal{L}^{-1}\left ( \frac{a}{s^{2}+a^{2}}\right ) =\sin \left ( at\right ) , hence \mathcal{L}^{-1}\left ( \frac{2}{s^{2}+4}\right ) =\sin 2t. The complete the inverse Laplace transform of \frac{10\left ( s+2\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) } is now found to be\begin{align*} g\left ( t\right ) & =\mathcal{L}^{-1}\left ( \frac{10\left ( s+2\right ) }{s\left ( s^{2}+4\right ) \left ( s+1\right ) }\right ) \\ & =5-2e^{-t}-3\cos 2t-\sin 2t \end{align*}
Therefore the final answer is just a time shifted version of the above, which is\begin{align*} f\left ( t\right ) & =g\left ( t-1\right ) \\ & =\boxed{5-2e^{-\left ( t-1\right ) }-3\cos 2\left ( t-1\right ) -\sin 2\left ( t-1\right )} \end{align*}
For t\geq 1 and zero otherwise.
Taking Laplace transform of both sides, and assuming zero for all initial conditions gives\begin{align*} s^{4}Y\left ( s\right ) +s^{3}Y\left ( s\right ) +5s^{2}Y\left ( s\right ) +7sY\left ( s\right ) +Y\left ( s\right ) & =s^{3}U\left ( s\right ) +2s^{2}U\left ( s\right ) +3sU\left ( s\right ) +7U\left ( s\right ) \\ Y\left ( s\right ) \left ( s^{4}+s^{3}+5s^{2}+7s+1\right ) & =U\left ( s\right ) \left ( s^{3}+2s^{2}+3s+7\right ) \\ \frac{Y\left ( s\right ) }{U\left ( s\right ) } & = \frac{s^{3}+2s^{2}+3s+7}{s^{4}+s^{3}+5s^{2}+7s+1} \end{align*}
Simulink model was setup and run for 30 seconds. The step response shows that the plant is not stable. This is due to the numerator having roots with positive real parts
The following diagram show the simulink model and the output
Replacing 7y^{\left ( 1\right ) } with \left ( 7+k\right ) y^{\left ( 1\right ) } in the given differential equation leads to the following transfer function\begin{align} s^{4}Y\left ( s\right ) +s^{3}Y\left ( s\right ) +5s^{2}Y\left ( s\right ) +\left ( 7+k\right ) sY\left ( s\right ) +Y\left ( s\right ) & =s^{3}U\left ( s\right ) +2s^{2}U\left ( s\right ) +3sU\left ( s\right ) +7U\left ( s\right ) \nonumber \\ Y\left ( s\right ) \left [ s^{4}+s^{3}+5s^{2}+\left ( 7+k\right ) s+1\right ] & =U\left ( s\right ) \left ( s^{3}+2s^{2}+3s+7\right ) \nonumber \end{align}
Hence \fbox{$\frac{Y\left ( s\right ) }{U\left ( s\right ) }=\frac{s^3+2s^2+3s+7}{s^4+s^3+5s^2+\left ( 7+k\right ) s+1}$}
1 | 5 | 1 |
1 | 7+k | 0 |
-\left ( 2+k\right ) | 1 | 0 |
\frac{-\left ( 2+k\right ) \left ( 7+k\right ) -1}{-\left ( 2+k\right ) } | 0 | |
Therefore, for no sign change in the first column, we need -\left ( 2+k\right ) >0 or 2+k<0 or k<-2 and we also need \frac{-\left ( 2+k\right ) \left ( 7+k\right ) -1}{-\left ( 2+k\right ) }>0 or \frac{k^{2}+9k+15}{2+k}>0 which means k^{2}+9k+15>0. The roots of this quadratic are k=-2.208\,7,k=-6.7913. Putting all these conditions together gives the range of value on k for a stable system as \fbox{$-6.79<k<-2.208$}
;
;