SOLUTION:
Using polar coordinates. The position vector of the particle is\begin{equation} \vec{r}=r\hat{r}+r\theta \hat{\theta } \tag{1} \end{equation}
Since we are asked about the angular momentum part, we will just find the equation of motion for the \theta generalized coordinates. \begin{align*} \frac{\partial L}{\partial \theta } & =0\\ \frac{\partial L}{\partial \dot{\theta }} & =mr^{2}\dot{\theta } \end{align*}
Hence the EQM is \frac{d}{dt}\left ( mr^{2}\dot{\theta }\right ) =Q_{\theta }
Therefore, the drag force can be written as \begin{align} \vec{F} & =-mk\frac{d\vec{r}}{dt}\nonumber \\ & =-mk\left ( \dot{r}\hat{r}+r\dot{\theta }\hat{\theta }\right ) \tag{2} \end{align}
Applying the definition of Q_{\theta }=\vec{F}\cdot \frac{\partial \vec{r}}{\partial \theta } gives\begin{align} Q_{\theta } & =-mk\left ( \dot{r}\hat{r}+r\dot{\theta }\hat{\theta }\right ) \cdot \frac{\partial }{\partial \theta }\left ( r\hat{r}+r\theta \hat{\theta }\right ) \nonumber \\ & =-mk\left ( \dot{r}\hat{r}+r\dot{\theta }\hat{\theta }\right ) \cdot \left ( r\hat{\theta }\right ) \nonumber \\ & =-mkr^{2}\dot{\theta } \tag{3} \end{align}
Now that we found Q_{\theta }, the EQM is \frac{d}{dt}\left ( mr^{2}\dot{\theta }\right ) =-mkr^{2}\dot{\theta }
SOLUTION:
From class notes, we found \frac{v_{o}}{v_{c}}=\sqrt{\frac{2r_{1}}{r_{1}+r_{o}}}=\sqrt{\frac{2}{1+\frac{r_{o}}{r_{1}}}}
Since \frac{2}{\left ( 1+\frac{r_{o}}{r_{1}}\right ) }=z^{2} the above simplifies to\begin{align*} \frac{\delta z}{\delta r_{1}} & =\frac{1}{2}\frac{1}{z}\left ( z^{2}\frac{1}{\left ( 1+\frac{r_{o}}{r_{1}}\right ) }\frac{r_{o}}{r_{1}^{2}}\right ) \\ & =\frac{1}{2}z\frac{r_{o}}{r_{1}^{2}\left ( 1+\frac{r_{o}}{r_{1}}\right ) }\\ & =\frac{1}{2}z\frac{r_{o}}{r_{1}\left ( r_{1}+r_{o}\right ) } \end{align*}
We want to find \frac{\delta z}{z}, therefore the above can be written as \frac{\delta z}{z}=\frac{\delta r_{1}}{r_{1}}\frac{1}{2}\frac{r_{o}}{\left ( r_{1}+r_{o}\right ) }
For \frac{\delta \left ( \frac{v_{o}}{v_{c}}\right ) }{\left ( \frac{v_{o}}{v_{c}}\right ) }=0.01 then \frac{\delta r_{1}}{r_{1}}=0.01\left ( 2\frac{\left ( r_{1}+r_{o}\right ) }{r_{o}}\right )
This means that \delta r_{1} is 22\% of r_{1}. The spacecraft will miss the moon by 22\% of r_{1}. (This seems like a big miss for such small speed boost error)
SOLUTION:
One way to find U_{eff}\left ( r\right ) is to find the Largrangian L and pick the terms in it that have r without time derivative in them. T=\frac{1}{2}m\dot{r}^{2}+\frac{1}{2}mr^{2}\dot{\theta }^{2}
Hence \begin{align*} L & =T-U\\ & =\frac{1}{2}m\dot{r}^{2}+\frac{1}{2}mr^{2}\dot{\theta }^{2}-\int \frac{ce^{-rb}}{r^{2}}dr \end{align*}
Hence U_{eff}\left ( r\right ) =\frac{1}{2}mr^{2}\dot{\theta }^{2}-\int \frac{ce^{-rb}}{r^{2}}dr
L=\frac{1}{2}m\dot{r}^{2}+\frac{1}{2}mr^{2}\dot{\theta }^{2}-\int \frac{ce^{-rb}}{r^{2}}dr
The equation of motion for r is\begin{align*} m\ddot{r}-\left ( mr\dot{\theta }^{2}-\frac{ce^{-rb}}{r^{2}}\right ) & =0\\ m\ddot{r}-mr\dot{\theta }^{2}+\frac{ce^{-rb}}{r^{2}} & =0\\ m\ddot{r}-mr\dot{\theta }^{2} & =F\left ( r\right ) \end{align*}
Written in terms of angular momentum, since \dot{\theta }=\frac{l}{mr^{2}} (integral of motion) where l is the angular momentum, the above becomes\begin{equation} m\ddot{r}-\frac{l^{2}}{mr^{3}}=F\left ( r\right ) \tag{1} \end{equation}
The equation of motion for \theta is \frac{d}{dt}\left ( mr^{2}\dot{\theta }\right ) =C
To check for stability, since this is circular orbit, the radius is constant, say a. Then we perturb it by replacing a by x+a where x\ll a in the equation of motion m\ddot{r}-\frac{l^{2}}{mr^{3}}=F\left ( r\right ) and it becomes\begin{align*} m\ddot{x}-\frac{l^{2}}{m\left ( x+a\right ) ^{3}} & =F\left ( x+a\right ) \\ m\ddot{x} & =\frac{l^{2}\left ( x+a\right ) ^{-3}}{m}+F\left ( a+x\right ) \end{align*}
Since x\ll a, we expand \left ( x+a\right ) ^{-3} in Binomial and obtain\begin{align*} m\ddot{x} & =\frac{l^{2}}{ma^{3}}\left ( 1+\frac{x}{a}\right ) ^{-3}+F\left ( a+x\right ) \\ & \approx \frac{l^{2}}{ma^{3}}\left ( 1-\frac{3x}{a}+\cdots \right ) +\overset{\text{Taylor expansion}}{\overbrace{F\left ( a\right ) +xF^{\prime }\left ( a\right ) +\cdots }} \end{align*}
Since circular orbit, then \ddot{r}=0 and the EQM motion becomes -\frac{l^{2}}{ma^{3}}=F\left ( a\right ) . Using this to replace \frac{l^{2}}{ma^{3}} with in the above expression we find\begin{align*} m\ddot{x} & \approx -F\left ( a\right ) \left ( 1-\frac{3x}{a}\right ) +F\left ( a\right ) +xF^{\prime }\left ( a\right ) \\ & =-F\left ( a\right ) +F\left ( a\right ) \frac{3x}{a}+F\left ( a\right ) +xF^{\prime }\left ( a\right ) \\ & =F\left ( a\right ) \frac{3x}{a}+xF^{\prime }\left ( a\right ) \end{align*}
Hence\begin{align*} m\ddot{x}+\left ( -F\left ( a\right ) \frac{3x}{a}-xF^{\prime }\left ( a\right ) \right ) & =0\\ m\ddot{x}+\left ( -\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) \right ) x & =0 \end{align*}
This perturbation motion is stable if \left ( -\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) \right ) >0. But F\left ( a\right ) =-\frac{ce^{-ba}}{a} and F^{\prime }\left ( a\right ) =\frac{ce^{-ab}}{a^{2}}+\frac{bce^{-ab}}{a}, hence\begin{align*} \Delta & =-\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) \\ & =-\frac{3}{a}\left ( -\frac{ce^{-ba}}{a}\right ) -\left ( \frac{ce^{-ab}}{a^{2}}+\frac{bce^{-ab}}{a}\right ) \end{align*}
We want the above to be positive for stability. Simplifying gives\begin{align*} \Delta & =\frac{3ce^{-ba}}{a^{2}}-\frac{ce^{-ab}}{a^{2}}-\frac{bce^{-ab}}{a}\\ & =\frac{2ce^{-ba}}{a^{2}}-\frac{bce^{-ab}}{a}\\ & =\frac{2ce^{-ba}-abce^{-ab}}{a^{2}}\\ & =\frac{ce^{-ba}}{a^{2}}\left ( 2-ab\right ) \end{align*}
Therefore, we want \left ( 2-ab\right ) >0 or 2>ab or \fbox{$b<\frac{2}{a}$}
The angle \psi is found from\begin{equation} \psi =\frac{T_{p}}{2}\dot{\theta }\tag{1} \end{equation}
Therefore (2) becomes\begin{align*} \dot{\theta } & \approx \frac{1}{ma^{2}}\sqrt{-F\left ( a\right ) ma^{3}}\\ & =\sqrt{\frac{-F\left ( a\right ) }{ma}} \end{align*}
We now find T_{p}. Since the perturbation equation of motion, from part (3) is m\ddot{x}+\left ( -\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) \right ) x=0, which is of the form \ddot{x}+\overset{\omega _{0}^{2}}{\overbrace{\left ( \frac{-\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) }{m}\right ) }}x=0
Equation (1) now becomes\begin{align*} \psi & =\frac{T_{p}}{2}\dot{\theta }\\ & =\pi \sqrt{\frac{m}{-\frac{3}{a}F\left ( a\right ) -F^{\prime }\left ( a\right ) }}\sqrt{\frac{-F\left ( a\right ) }{ma}}\\ & =\pi \sqrt{\frac{-F\left ( a\right ) }{-3F\left ( a\right ) -aF^{\prime }\left ( a\right ) }}\\ & =\pi \sqrt{\frac{F\left ( a\right ) }{3F\left ( a\right ) +aF^{\prime }\left ( a\right ) }} \end{align*}
But F\left ( a\right ) =-\frac{ce^{-ba}}{a^{2}} and F^{\prime }\left ( a\right ) =\frac{ce^{-ab}}{a^{2}}+\frac{bce^{-ab}}{a} then the above becomes\begin{align*} \psi & =\pi \sqrt{\frac{-\frac{ce^{-ba}}{a^{2}}}{3F\left ( a\right ) +aF^{\prime }\left ( a\right ) }}\\ & =\pi \sqrt{\frac{-\frac{ce^{-ba}}{a^{2}}}{3\left ( -\frac{ce^{-ba}}{a^{2}}\right ) +a\left ( \frac{ce^{-ab}}{a^{2}}+\frac{bce^{-ab}}{a}\right ) }}\\ & =\pi \sqrt{\frac{-\frac{ce^{-ba}}{a^{2}}}{-3\frac{ce^{-ba}}{a^{2}}+\left ( \frac{ce^{-ab}+abce^{-ab}}{a}\right ) }}\\ & =\pi \sqrt{\frac{-ce^{-ba}}{-3ce^{-ba}+\left ( ace^{-ab}+a^{2}bce^{-ab}\right ) }}\\ & =\pi \sqrt{\frac{-1}{-3+a+a^{2}b}} \end{align*}
Hence \fbox{$\psi =\pi \sqrt{\frac{1}{3-a\left ( 1+ab\right ) }}$}
SOLUTION:
The first time the ball falls from height h it will have speed of v_{1}=\sqrt{2gh} just before hitting the platform, which is found using mgh=\frac{1}{2}mv_{1}^{2}
The above can be written as\begin{equation} \Delta =h\left ( 2+2\varepsilon ^{2}+2\varepsilon ^{4}+\cdots \right ) -h \tag{1} \end{equation}
Hence total distance is \fbox{$\frac{h\left ( 1+\varepsilon ^2\right ) }{1-\varepsilon ^2}$}
But 2\sum _{n=0}^{\infty }\varepsilon ^{n}=2\frac{1}{1-\varepsilon }, hence the above becomes\begin{align*} \Delta & =\sqrt{\frac{2h}{g}}\frac{2}{1-\varepsilon }-\sqrt{\frac{2h}{g}}\\ & =\sqrt{\frac{2h}{g}}\left ( \frac{2}{1-\varepsilon }-1\right ) \\ & =\sqrt{\frac{2h}{g}}\left ( \frac{2-\left ( 1-\varepsilon \right ) }{1-\varepsilon }\right ) \end{align*}
Hence total time is \fbox{$\sqrt{\frac{2h}{g}}\left ( \frac{1+\varepsilon }{1-\varepsilon }\right ) $}
SOLUTION:
First we make a diagram showing the geometry involved
We resolve the incoming velocity into its x,y\,\ components and apply conservation of linear momentum to each part. The vertical component remain the same after collision since it is parallel to the wall. Hence v_{y}^{\prime }=v_{y}=v\cos \theta
Hence \fbox{$\alpha =\arctan \left ( \varepsilon \tan \theta \right ) $}