Processing math: 100%

2.4 HW 3

  2.4.1 Problem 2.5.1(e) (problem 1)
  2.4.2 Problem 2.5.2 (problem 2)
  2.4.3 Problem 2.5.5(c,d) (problem 3)
  2.4.4 Problem 2.5.8(b) (problem 4)
  2.4.5 Problem 2.5.14 (problem 5)
  2.4.6 Problem 2.5.22 (problem 6)
  2.4.7 Problem 2.5.24 (problem 7)
PDF (letter size
PDF (legal size

2.4.1 Problem 2.5.1(e) (problem 1)

pict

Let u\left ( x,y\right ) =X\left ( x\right ) Y\left ( x\right ) . Substituting this into the PDE \frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}=0 and simplifying gives \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y} Each side depends on different independent variable and they are equal, therefore they must be equal to same constant. \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=\pm \lambda Since the boundary conditions along the x direction are the homogeneous ones, -\lambda is selected in the above. Two ODE’s (1,2) are obtained as follows\begin{equation} X^{\prime \prime }+\lambda X=0 \tag{1} \end{equation} With the boundary conditions\begin{align*} X\left ( 0\right ) & =0\\ X\left ( L\right ) & =0 \end{align*}

And\begin{equation} Y^{\prime \prime }-\lambda Y=0 \tag{2} \end{equation} With the boundary conditions\begin{align*} Y\left ( 0\right ) & =Y^{\prime }\left ( 0\right ) \\ Y\left ( H\right ) & =f\left ( x\right ) \end{align*}

In all these cases \lambda will turn out to be positive. This is shown for this problem only and not be repeated again. The solution to (1) is X=Ae^{\sqrt{\lambda }x}+Be^{-\sqrt{\lambda }x}

Case \lambda <0

X=A\cosh \left ( \sqrt{\lambda }x\right ) +B\sinh \left ( \sqrt{\lambda }x\right ) At x=0, the above gives 0=A. Hence X=B\sinh \left ( \sqrt{\lambda }x\right ) . At x=L this gives X=B\sinh \left ( \sqrt{\lambda }L\right ) . But \sinh \left ( \sqrt{\lambda }L\right ) =0 only at 0 and \sqrt{\lambda }L\neq 0, therefore B=0 and this leads to trivial solution. Hence \lambda <0 is not an eigenvalue.

Case \lambda =0

X=Ax+B Hence at x=0 this gives 0=B and the solution becomes X=B. At x=L, B=0. Hence the trivial solution. \lambda =0 is not an eigenvalue.

Case \lambda >0

Solution is X=A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) At x=0 this gives 0=A and the solution becomes X=B\sin \left ( \sqrt{\lambda }x\right ) . At x=L 0=B\sin \left ( \sqrt{\lambda }L\right ) For non-trivial solution \sin \left ( \sqrt{\lambda }L\right ) =0 or \sqrt{\lambda }L=n\pi where n=1,2,3,\cdots , therefore \lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2}\qquad n=1,2,3,\cdots Eigenfunctions are\begin{equation} X_{n}\left ( x\right ) =B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \qquad n=1,2,3,\cdots \tag{3} \end{equation} For the Y ODE, the solution is\begin{align*} Y_{n} & =C_{n}\cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \\ Y_{n}^{\prime } & =C_{n}\frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}y\right ) +D_{n}\frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) \end{align*}

Applying B.C. at y=0 gives\begin{align*} Y\left ( 0\right ) & =Y^{\prime }\left ( 0\right ) \\ C_{n}\cosh \left ( 0\right ) & =D_{n}\frac{n\pi }{L}\cosh \left ( 0\right ) \\ C_{n} & =D_{n}\frac{n\pi }{L} \end{align*}

The eigenfunctions Y_{n} are\begin{align*} Y_{n} & =D_{n}\frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \\ & =D_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \end{align*}

Now the complete solution is produced\begin{align*} u_{n}\left ( x,y\right ) & =Y_{n}X_{n}\\ & =D_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

Let D_{n}B_{n}=B_{n} since a constant. (no need to make up a new symbol). u_{n}\left ( x,y\right ) =B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) Sum of eigenfunctions is the solution, hence u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) The nonhomogeneous boundary condition is now resolved.  At y=H u\left ( x,H\right ) =f\left ( x\right ) Therefore f\left ( x\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) Multiplying both sides by \sin \left ( \frac{m\pi }{L}x\right ) and integrating gives\begin{align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx & =\int _{0}^{L}\sin \left ( \frac{m\pi }{L}x\right ) \sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \int _{0}^{L}\sin \left ( \frac{n\pi }{L}x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\\ & =B_{m}\left ( \frac{m\pi }{L}\cosh \left ( \frac{m\pi }{L}H\right ) +\sinh \left ( \frac{m\pi }{L}H\right ) \right ) \frac{L}{2} \end{align*}

Hence\begin{equation} B_{n}=\frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx}{\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) } \tag{4} \end{equation} This completes the solution. In summary u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) With B_{n} given by (4). The following are some plots of the solution above for different f\left ( x\right ) .

pict
Figure 2.1:Solution using f(x)=x, L=1, H=1

pict
Figure 2.2:Solution using f(x)=\sin (12 x), L=1, H=1

pict
Figure 2.3:Solution using f(x)=\cos (4 x), L=1, H=1

pict
Figure 2.4:Solution using f(x)=\sin (3 x) \cos (2 x), L=5, H=1

2.4.2 Problem 2.5.2 (problem 2)

   2.4.2.1 part (a)
   2.4.2.2 Part (b)
   2.4.2.3 Part (c)

pict pict

2.4.2.1 part (a)

At steady state, there will be no heat energy flowing across the boundaries. Which implies the flux is zero. Three of the boundaries are already insulated and hence the flux is zero at those boundaries as given. Therefore, the flux should also be zero at the top boundary at steady state.

By definition, the flux is \bar{\phi }=-k\bar{\nabla }u\cdot \hat{n}. (Direction of flux vector is from hot to cold). At the top boundary, this becomes \begin{equation} \phi =-k\frac{\partial u}{\partial y}\left ( x,H\right ) \tag{1} \end{equation} Therefore, For the condition of a solution, total flux on the boundary is zero, or \int _{0}^{L}\phi dx=0 Using (1) in the above gives\begin{align*} -k\int _{0}^{L}\frac{\partial u}{\partial y}\left ( x,H\right ) dx & =0\\ \int _{0}^{L}\frac{\partial u}{\partial y}\left ( x,H\right ) dx & =0 \end{align*}

But \frac{\partial u}{\partial y}\left ( x,H\right ) =f\left ( x\right ) and the above becomes \fbox{$\int _0^Lf\left ( x\right ) dx=0$}

2.4.2.2 Part (b)

Using separation of variables results in the following two ODE’s\begin{align*} X^{\prime \prime }+\lambda X & =0\\ X^{\prime }\left ( 0\right ) & =0\\ X^{\prime }\left ( L\right ) & =0 \end{align*}

And\begin{align*} Y^{\prime \prime }-\lambda Y & =0\\ Y^{\prime }\left ( 0\right ) & =0\\ Y^{\prime }\left ( L\right ) & =f\left ( x\right ) \end{align*}

The solution to the X\left ( x\right ) ODE has been obtained before as\begin{align} X_{n} & =A_{0}+A_{n}\cos \left ( \sqrt{\lambda _{n}}x\right ) \qquad n=1,2,3,\cdots \nonumber \\ X_{n} & =A_{n}\cos \left ( \sqrt{\lambda _{n}}x\right ) \qquad n=0,1,2,3,\cdots \tag{1} \end{align}

Where \lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2}. In this ODE \lambda =0 is applicable as well as \lambda >0. (As found in last HW).

Now the Y\left ( y\right ) ODE is solved (for same set of eigenvalues). For \lambda =0 the ODE becomes Y^{\prime \prime }=0 and solution is Y=Cy+D. Hence  Y^{\prime }=C and since Y^{\prime }\left ( 0\right ) =0 then C=0. Hence the solution is Y=C_{0}, where C_{0} is some new constant. For \lambda >0, the solution is \begin{align*} Y_{n} & =C_{n}\cosh \left ( \sqrt{\lambda _{n}}y\right ) +D_{n}\sinh \left ( \sqrt{\lambda _{n}}y\right ) \qquad n=1,2,3,\cdots \\ Y_{n}^{\prime } & =C_{n}\sqrt{\lambda _{n}}\sinh \left ( \sqrt{\lambda _{n}}y\right ) +D_{n}\sqrt{\lambda _{n}}\cosh \left ( \sqrt{\lambda _{n}}y\right ) \end{align*}

At y=0\begin{align*} 0 & =Y_{n}^{\prime }\left ( 0\right ) \\ & =D_{n}\sqrt{\lambda _{n}}\qquad n=1,2,3,\cdots \end{align*}

Since \lambda _{n}>0 for n=1,2,3,\cdots then D_{n}=0 and the Y\left ( y\right ) solution becomes\begin{align} Y_{n} & =C_{0}+C_{n}\cosh \left ( \sqrt{\lambda _{n}}y\right ) \qquad n=1,2,3,\cdots \nonumber \\ Y_{n} & =C_{n}\cosh \left ( \sqrt{\lambda _{n}}y\right ) \qquad n=0,1,2,3,\cdots \tag{2} \end{align}

Combining (1) and (2) gives\begin{align*} u_{n}\left ( x,y\right ) & =X_{n}Y_{n}\\ & =A_{n}\cos \left ( \sqrt{\lambda _{n}}x\right ) C_{n}\cosh \left ( \sqrt{\lambda _{n}}y\right ) \qquad n=0,1,2,3,\cdots \\ & =A_{n}\cos \left ( \sqrt{\lambda _{n}}x\right ) \cosh \left ( \sqrt{\lambda _{n}}y\right ) \qquad n=0,1,2,3,\cdots \end{align*}

Where A_{n}C_{n} above was combined and renamed to A_{n} (No need to add new symbol). Hence by superposition the solution becomes u\left ( x,y\right ) =\sum _{n=0}^{\infty }A_{n}\cos \left ( \sqrt{\lambda _{n}}x\right ) \cosh \left ( \sqrt{\lambda _{n}}y\right ) Since \lambda _{0}=0 and \cos \left ( \sqrt{\lambda _{0}}x\right ) \cosh \left ( \sqrt{\lambda _{0}}y\right ) =1, the above can be also be written as\begin{equation} u\left ( x,y\right ) =A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \tag{3} \end{equation} At y=H, it is given that \frac{\partial u}{\partial y}\left ( x,H\right ) =f\left ( x\right ) . But \frac{\partial u}{\partial y}=\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}y\right ) At y=H the above becomes\begin{equation} f\left ( x\right ) =\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}H\right ) \tag{4} \end{equation} To verify part (a) by integrating both sides\begin{align*} \int _{0}^{L}f\left ( x\right ) dx & =\int _{0}^{L}\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}H\right ) dx\\ & =\sum _{n=1}^{\infty }A_{n}\frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}H\right ) \int _{0}^{L}\cos \left ( \frac{n\pi }{L}x\right ) dx \end{align*}

But \int _{0}^{L}\cos \left ( \frac{n\pi }{L}x\right ) dx=0, hence \int _{0}^{L}f\left ( x\right ) dx=0 The verification is completed. Now back to (4) and multiplying by \cos \left ( \frac{m\pi }{L}x\right ) and integrating\begin{align*} \int _{0}^{L}f\left ( x\right ) \cos \left ( \frac{m\pi }{L}x\right ) dx & =\int _{0}^{L}\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \sqrt{\lambda _{n}}\sinh \left ( \frac{n\pi }{L}H\right ) dx\\ & =\sum _{n=1}^{\infty }A_{n}\sinh \left ( \frac{n\pi }{L}H\right ) \int _{0}^{L}\cos \left ( \frac{n\pi }{L}x\right ) \sqrt{\lambda _{n}}dx\\ & =A_{m}\sinh \left ( \frac{m\pi }{L}H\right ) \frac{L}{2} \end{align*}

Hence A_{n}=\frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \cos \left ( \frac{n\pi }{L}x\right ) dx}{\sinh \left ( \frac{n\pi }{L}H\right ) }\qquad n=1,2,3,\cdots Therefore the solution now becomes (from (3)) u\left ( x,y\right ) =A_{0}+\sum _{n=1}^{\infty }\left ( \frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \cos \left ( \frac{n\pi }{L}x\right ) dx}{\sinh \left ( \frac{n\pi }{L}H\right ) }\right ) \cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) Only A_{0} remains to be found. This is done in next part.

2.4.2.3 Part (c)

Since at steady state, total energy is the same as initial energy. Initial temperature is given as g\left ( x,y\right ) , therefore initial thermal energy is found by integrating over the whole domain. This is 2D, therefore \int \int \rho cg\left ( x,y\right ) dA=\rho c\int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx Setting the above to \rho c\int _{0}^{L}\int _{0}^{H}u\left ( x,y\right ) dydx found in last part, gives one equation with one unknown, which is A_{0} to solve for. Hence\begin{align} \rho c\int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx & =\rho c\int _{0}^{L}\int _{0}^{H}A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) dydx\nonumber \\ \int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx & =\int _{0}^{L}\int _{0}^{H}A_{0}dydx+\int _{0}^{L}\int _{0}^{H}\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) dydx\nonumber \\ \int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx & =A_{0}HL+\sum _{n=1}^{\infty }A_{n}\int _{0}^{L}\int _{0}^{H}\cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) dydx \tag{5} \end{align}

But \int _{0}^{L}\int _{0}^{H}\cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right ) dydx=\int _{0}^{H}\cosh \left ( \frac{n\pi }{L}y\right ) \left ( \int _{0}^{L}\cos \left ( \frac{n\pi }{L}x\right ) dx\right ) dy Where \int _{0}^{L}\cos \left ( \frac{n\pi }{L}x\right ) dx=0. Hence the whole sum vanish. Therefore (5) reduces to\begin{align*} \int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx & =A_{0}HL\\ A_{0} & =\frac{1}{HL}\int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx \end{align*}

Summary The complete solution is u\left ( x,y\right ) =\left ( \frac{1}{HL}\int _{0}^{L}\int _{0}^{H}g\left ( x,y\right ) dydx\right ) +\sum _{n=1}^{\infty }\left ( \frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \cos \left ( \frac{n\pi }{L}x\right ) dx}{\sinh \left ( \frac{n\pi }{L}H\right ) }\right ) \cos \left ( \frac{n\pi }{L}x\right ) \cosh \left ( \frac{n\pi }{L}y\right )

The following are some plots of the solution.

pict
Figure 2.5:Solution using g(x,y)=x y, f(x)=\sin (3 x), L=5, H=1

pict
Figure 2.6:Solution using g(x,y)=\sin (y) \cos (x y), f(x)=x, L=5, H=1

pict
Figure 2.7:Solution using g(x,y)=y \sin (y) \cos (x y), f(x)=\sin (10 x), L=1, H=1

2.4.3 Problem 2.5.5(c,d) (problem 3)

   2.4.3.1 Part c
   2.4.3.2 Part (d)

pict

2.4.3.1 Part c

The Laplace PDE in polar coordinates is  \begin{equation} r^{2}\frac{\partial ^{2}u}{\partial r^{2}}+r\frac{\partial u}{\partial r}+\frac{\partial ^{2}u}{\partial \theta ^{2}}=0 \tag{A} \end{equation} With boundary conditions \begin{align} u\left ( r,0\right ) & =0\nonumber \\ u\left ( r,\frac{\pi }{2}\right ) & =0\tag{B}\\ u\left ( 1,\theta \right ) & =f\left ( \theta \right ) \nonumber \end{align}

Assuming the solution can be written as u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) And substituting this assumed solution back into the (A) gives r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 Dividing the above by R\Theta \neq 0 gives\begin{align*} r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}+\frac{\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R} & =-\frac{\Theta ^{\prime \prime }}{\Theta } \end{align*}

Since each side depends on different independent variable and they are equal, they must be equal to same constant. say \lambda . r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}=-\frac{\Theta ^{\prime \prime }}{\Theta }=\lambda This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to each ODE. This gives\begin{align} \Theta ^{\prime \prime }+\lambda \Theta & =0\nonumber \\ \Theta \left ( 0\right ) & =0\tag{1}\\ \Theta \left ( \frac{\pi }{2}\right ) & =0\nonumber \end{align}

And\begin{align} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R & =0\tag{2}\\ \left \vert R\left ( 0\right ) \right \vert & <\infty \nonumber \end{align}

Starting with (1). Consider the Case \lambda <0. The solution in this case will be \Theta =A\cosh \left ( \sqrt{\lambda }\theta \right ) +B\sinh \left ( \sqrt{\lambda }\theta \right ) Applying first B.C. gives A=0. The solution becomes \Theta =B\sinh \left ( \sqrt{\lambda }\theta \right ) . Applying second B.C. gives 0=B\sinh \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) But \sinh is zero only when \sqrt{\lambda }\frac{\pi }{2}=0 which is not the case here. Therefore B=0 and hence trivial solution. Hence \lambda <0 is not an eigenvalue.

Case \lambda =0 The ODE becomes \Theta ^{\prime \prime }=0 with solution \Theta =A\theta +B. First B.C. gives 0=B. The solution becomes \Theta =A\theta . Second B.C. gives 0=A\frac{\pi }{2}, hence A=0 and trivial solution. Therefore \lambda =0 is not an eigenvalue.

Case \lambda >0 The ODE becomes \Theta ^{\prime \prime }+\lambda \Theta =0 with solution \Theta =A\cos \left ( \sqrt{\lambda }\theta \right ) +B\sin \left ( \sqrt{\lambda }\theta \right ) The first B.C. gives 0=A. The solution becomes \Theta =B\sin \left ( \sqrt{\lambda }\theta \right ) And the second B.C. gives 0=B\sin \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) For non-trivial solution \sin \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) =0 or \sqrt{\lambda }\frac{\pi }{2}=n\pi for n=1,2,3,\cdots . Hence the eigenvalues are\begin{align*} \sqrt{\lambda _{n}} & =2n\\ \lambda _{n} & =4n^{2}\qquad n=1,2,3,\cdots \end{align*}

And the eigenfunctions are \begin{equation} \fbox{$\Theta _n\left ( \theta \right ) =B_n\sin \left ( 2n\theta \right ) \qquad n=1,2,3,\cdots $} \tag{3} \end{equation} Now the R ODE is solved. There is one case to consider, which is \lambda >0 based on the above. The ODE is\begin{align*} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda _{n}R & =0\\ r^{2}R^{\prime \prime }+rR^{\prime }-4n^{2}R & =0\qquad n=1,2,3,\cdots \end{align*}

This is Euler ODE. Let R\left ( r\right ) =r^{p}. Then R^{\prime }=pr^{p-1} and R^{\prime \prime }=p\left ( p-1\right ) r^{p-2}. This gives\begin{align*} r^{2}\left ( p\left ( p-1\right ) r^{p-2}\right ) +r\left ( pr^{p-1}\right ) -4n^{2}r^{p} & =0\\ \left ( \left ( p^{2}-p\right ) r^{p}\right ) +pr^{p}-4n^{2}r^{p} & =0\\ r^{p}p^{2}-pr^{p}+pr^{p}-4n^{2}r^{p} & =0\\ p^{2}-4n^{2} & =0\\ p & =\pm 2n \end{align*}

Hence the solution is R\left ( r\right ) =Cr^{2n}+D\frac{1}{r^{2n}} Applying the condition that \left \vert R\left ( 0\right ) \right \vert <\infty implies D=0, and the solution becomes\begin{equation} R_{n}\left ( r\right ) =C_{n}r^{2n}\qquad n=1,2,3,\cdots \tag{4} \end{equation} Using (3,4) the solution u_{n}\left ( r,\theta \right ) is\begin{align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ & =C_{n}r^{2n}B_{n}\sin \left ( 2n\theta \right ) \\ & =B_{n}r^{2n}\sin \left ( 2n\theta \right ) \end{align*}

Where C_{n}B_{n} was combined into one constant B_{n}. (No need to introduce new symbol). The final solution is\begin{align*} u\left ( r,\theta \right ) & =\sum _{n=1}^{\infty }u_{n}\left ( r,\theta \right ) \\ & =\sum _{n=1}^{\infty }B_{n}r^{2n}\sin \left ( 2n\theta \right ) \end{align*}

Now the nonhomogeneous condition is applied to find B_{n}. \frac{\partial }{\partial r}u\left ( r,\theta \right ) =\sum _{n=1}^{\infty }B_{n}\left ( 2n\right ) r^{2n-1}\sin \left ( 2n\theta \right ) Hence \frac{\partial }{\partial r}u\left ( 1,\theta \right ) =f\left ( \theta \right ) becomes f\left ( \theta \right ) =\sum _{n=1}^{\infty }2B_{n}n\sin \left ( 2n\theta \right ) Multiplying by \sin \left ( 2m\theta \right ) and integrating gives\begin{align} \int _{0}^{\frac{\pi }{2}}f\left ( \theta \right ) \sin \left ( 2m\theta \right ) d\theta & =\int _{0}^{\frac{\pi }{2}}\sin \left ( 2m\theta \right ) \sum _{n=1}^{\infty }2B_{n}n\sin \left ( 2n\theta \right ) d\theta \nonumber \\ & =\sum _{n=1}^{\infty }2nB_{n}\int _{0}^{\frac{\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta \tag{5} \end{align}

When n=m then\begin{align*} \int _{0}^{\frac{\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta & =\int _{0}^{\frac{\pi }{2}}\sin ^{2}\left ( 2n\theta \right ) d\theta \\ & =\int _{0}^{\frac{\pi }{2}}\left ( \frac{1}{2}-\frac{1}{2}\cos 4n\theta \right ) d\theta \\ & =\frac{1}{2}\left [ \theta \right ] _{0}^{\frac{\pi }{2}}-\frac{1}{2}\left [ \frac{\sin 4n\theta }{4n}\right ] _{0}^{\frac{\pi }{2}}\\ & =\frac{\pi }{4}-\left ( \frac{1}{8n}\left ( \sin \frac{4n}{2}\pi \right ) -\sin \left ( 0\right ) \right ) \end{align*}

And since n is integer, then \sin \frac{4n}{2}\pi =\sin 2n\pi =0 and the above becomes \frac{\pi }{4}.

Now for the case when n\neq m using \sin A\sin B=\frac{1}{2}\left ( \cos \left ( A-B\right ) -\cos \left ( A+B\right ) \right ) then\begin{align*} \int _{0}^{\frac{\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta & =\int _{0}^{\frac{\pi }{2}}\frac{1}{2}\left ( \cos \left ( 2m\theta -2n\theta \right ) -\cos \left ( 2m\theta +2n\theta \right ) \right ) d\theta \\ & =\frac{1}{2}\int _{0}^{\frac{\pi }{2}}\cos \left ( 2m\theta -2n\theta \right ) d\theta -\frac{1}{2}\int _{0}^{\frac{\pi }{2}}\cos \left ( 2m\theta +2n\theta \right ) d\theta \\ & =\frac{1}{2}\int _{0}^{\frac{\pi }{2}}\cos \left ( \left ( 2m-2n\right ) \theta \right ) d\theta -\frac{1}{2}\int _{0}^{\frac{\pi }{2}}\cos \left ( \left ( 2m+2n\right ) \theta \right ) d\theta \\ & =\frac{1}{2}\left [ \frac{\sin \left ( \left ( 2m-2n\right ) \theta \right ) }{\left ( 2m-2n\right ) }\right ] _{0}^{\frac{\pi }{2}}-\frac{1}{2}\left [ \frac{\sin \left ( \left ( 2m+2n\right ) \theta \right ) }{\left ( 2m+2n\right ) }\right ] _{0}^{\frac{\pi }{2}}\\ & =\frac{1}{4\left ( m-n\right ) }\left [ \sin \left ( \left ( 2m-2n\right ) \theta \right ) \right ] _{0}^{\frac{\pi }{2}}-\frac{1}{4\left ( m+n\right ) }\left [ \sin \left ( \left ( 2m+2n\right ) \theta \right ) \right ] _{0}^{\frac{\pi }{2}}\\ & =\frac{1}{4\left ( m-n\right ) }\left [ \sin \left ( \left ( 2m-2n\right ) \frac{\pi }{2}\right ) -0\right ] -\frac{1}{4\left ( m+n\right ) }\left [ \sin \left ( \left ( 2m+2n\right ) \frac{\pi }{2}\right ) -0\right ] \end{align*}

Since 2m-2n\frac{\pi }{2}=\pi \left ( m-n\right ) which is integer multiple of \pi and also \left ( 2m+2n\right ) \frac{\pi }{2} is integer multiple of \pi then the whole term above becomes zero. Therefore (5) becomes \int _{0}^{\frac{\pi }{2}}f\left ( \theta \right ) \sin \left ( 2m\theta \right ) d\theta =2mB_{m}\frac{\pi }{4} Hence \fbox{$B_n=\frac{2}{\pi n}\int _0^\frac{\pi }{2}f\left ( \theta \right ) \sin \left ( 2n\theta \right ) d\theta $} Summary: the final solution is\begin{align*} u\left ( r,\theta \right ) & =\sum _{n=1}^{\infty }B_{n}\left ( r^{2n}\sin \left ( 2n\theta \right ) \right ) \\ B_{n} & =\frac{2}{\pi n}\int _{0}^{\frac{\pi }{2}}f\left ( \theta \right ) \sin \left ( 2n\theta \right ) d\theta \end{align*}

The following are some plots of the solution

pict
Figure 2.8:Solution using f(\theta )= \theta \sin (3 \theta )

pict
Figure 2.9:Solution using f(\theta )= \theta
2.4.3.2 Part (d)

The Laplace PDE in polar coordinates is   r^{2}\frac{\partial ^{2}u}{\partial r^{2}}+r\frac{\partial u}{\partial r}+\frac{\partial ^{2}u}{\partial \theta ^{2}}=0 With boundary conditions\begin{align*} u\left ( r,0\right ) & =0\\ u\left ( r,\frac{\pi }{2}\right ) & =0\\ u\left ( 1,\theta \right ) & =f\left ( \theta \right ) \end{align*}

Assuming the solution is u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) Substituting this back into the PDE gives r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 Dividing by R\Theta \neq 0 gives\begin{align*} r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}+\frac{\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R} & =-\frac{\Theta ^{\prime \prime }}{\Theta } \end{align*}

Since each side depends on different independent variable and they are equal, they must be equal to same constant. say \lambda . r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}=-\frac{\Theta ^{\prime \prime }}{\Theta }=\lambda This results in two ODE’s with the following boundary conditions\begin{align} \Theta ^{\prime \prime }+\lambda \Theta & =0\nonumber \\ \Theta ^{\prime }\left ( 0\right ) & =0\tag{1}\\ \Theta ^{\prime }\left ( \frac{\pi }{2}\right ) & =0\nonumber \end{align}

And\begin{align} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R & =0\tag{2}\\ \left \vert R\left ( 0\right ) \right \vert & <\infty \nonumber \end{align}

Starting with (1). Consider Case \lambda <0 The solution will be \Theta =A\cosh \left ( \sqrt{\lambda }\theta \right ) +B\sinh \left ( \sqrt{\lambda }\theta \right ) And \Theta ^{\prime }=A\sqrt{\lambda }\sinh \left ( \sqrt{\lambda }\theta \right ) +B\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\theta \right ) Applying first B.C. gives 0=B\sqrt{\lambda }, therefore B=0 and the solution becomes A\cosh \left ( \sqrt{\lambda }\theta \right ) and \Theta ^{\prime }=A\sqrt{\lambda }\sinh \left ( \sqrt{\lambda }\theta \right ) . Applying second B.C. gives 0=A\sqrt{\lambda }\sinh \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) . But \sinh \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) \neq 0 since \lambda \neq 0, therefore A=0 and the trivial solution results. Hence \lambda <0 is not an eigenvalue.

Case \lambda =0 The ODE becomes \Theta ^{\prime \prime }=0 With solution \Theta =A\theta +B And \Theta ^{\prime }=A. First B.C. gives 0=A. Hence \Theta =B. Second B.C. produces no result and the solution is constant. Hence \fbox{$\Theta =C_0$} Where C_{0} is constant. Therefore \lambda =0 is an eigenvalue.

Case \lambda >0 The ODE becomes \Theta ^{\prime \prime }+\lambda \Theta =0 with solution \begin{align*} \Theta & =A\cos \left ( \sqrt{\lambda }\theta \right ) +B\sin \left ( \sqrt{\lambda }\theta \right ) \\ \Theta ^{\prime } & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\theta \right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }\theta \right ) \end{align*}

The first B.C. gives 0=B\sqrt{\lambda } or B=0. The solution becomes \Theta =A\cos \left ( \sqrt{\lambda }\theta \right ) And \Theta ^{\prime }=-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\theta \right ) . The second B.C. gives 0=-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) For non-trivial solution \sin \left ( \sqrt{\lambda }\frac{\pi }{2}\right ) =0 or \sqrt{\lambda }\frac{\pi }{2}=n\pi for n=1,2,3,\cdots . Hence the eigenvalues are\begin{align*} \sqrt{\lambda _{n}} & =2n\\ \lambda _{n} & =4n^{2}\qquad n=1,2,3,\cdots \end{align*}

And the eigenfunction is \begin{equation} \fbox{$\Theta _n\left ( \theta \right ) =A_n\cos \left ( 2n\theta \right ) \qquad n=1,2,3,\cdots $} \tag{3} \end{equation} Now the R ODE is solved. The ODE is r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R=0 Case \lambda =0

The ODE becomes r^{2}R^{\prime \prime }+rR^{\prime }=0. Let v\left ( r\right ) =R^{\prime }\left ( r\right ) and the ODE becomes r^{2}v^{\prime }+rv=0 Dividing by r\neq 0 v^{\prime }\left ( r\right ) +\frac{1}{r}v\left ( r\right ) =0 Using integrating factor e^{\int \frac{1}{r}dr}=e^{\ln r}=r. Hence \frac{d}{dr}\left ( rv\right ) =0 Hence\begin{align*} rv & =A\\ v\left ( r\right ) & =\frac{A}{r} \end{align*}

But since v\left ( r\right ) =R^{\prime }\left ( r\right ) then R^{\prime }=\frac{c_{1}}{r}. The solution to this ODE Is R\left ( r\right ) =\int \frac{A}{r}dr+B Therefore, for \lambda =0 the solution is \fbox{$R\left ( r\right ) =A\ln \left \vert r\right \vert +B\qquad r\neq 0$} Since \lim _{r\rightarrow 0}\left \vert R\left ( r\right ) \right \vert <\infty Then A=0 and the solution is just a constant R\left ( r\right ) =B_{0} Case \lambda >0 The ODE is r^{2}R^{\prime \prime }+rR^{\prime }-4n^{2}R=0\qquad n=1,2,3,\cdots The Let R\left ( r\right ) =r^{p}. Then R^{\prime }=pr^{p-1} and R^{\prime \prime }=p\left ( p-1\right ) r^{p-2}. This gives\begin{align*} r^{2}\left ( p\left ( p-1\right ) r^{p-2}\right ) +r\left ( pr^{p-1}\right ) -4n^{2}r^{p} & =0\\ \left ( \left ( p^{2}-p\right ) r^{p}\right ) +pr^{p}-4n^{2}r^{p} & =0\\ r^{p}p^{2}-pr^{p}+pr^{p}-4n^{2}r^{p} & =0\\ p^{2}-4n^{2} & =0\\ p & =\pm 2n \end{align*}

Hence the solution is R\left ( r\right ) =Cr^{2n}+D\frac{1}{r^{2n}} The condition that \lim _{r\rightarrow 0}\left \vert R\left ( r\right ) \right \vert <\infty Implies D=0, Hence the solution becomes\begin{equation} R_{n}\left ( r\right ) =C_{n}r^{2}n\qquad n=1,2,3,\cdots \tag{4} \end{equation} Now the solutions are combined. For \lambda =0 the solution is u_{0}\left ( r,\theta \right ) =C_{0}B_{0} Which can be combined to one constant B_{0}. Hence\begin{equation} \fbox{$u_0=B_0$}\tag{5} \end{equation} And for \lambda >0 the solution is\begin{align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ & =C_{n}r^{2n}\left ( A_{n}\cos \left ( 2n\theta \right ) \right ) \\ & =B_{n}r^{2n}\cos \left ( 2n\theta \right ) \end{align*}

Where C_{n}A_{n} are combined into one constant B_{n}. Hence\begin{equation} u_{n}\left ( r,\theta \right ) =\sum _{n=1}^{\infty }B_{n}r^{2n}\cos \left ( 2n\theta \right ) \tag{6} \end{equation} Equation (5) and (6) can be combined into one this now includes eigenfunctions for both \lambda =0 and \lambda >0\begin{equation} u\left ( r,\theta \right ) =B_{0}+\sum _{n=1}^{\infty }B_{n}r^{2n}\cos \left ( 2n\theta \right ) \tag{7} \end{equation} Where B_{0} represent the products of the eigenfunctions for R and \Theta for \lambda =0. Now the nonhomogeneous condition is applied to find B_{n}. \frac{\partial }{\partial r}u\left ( r,\theta \right ) =\sum _{n=1}^{\infty }B_{n}\left ( 2n\right ) r^{2n-1}\cos \left ( 2n\theta \right ) Hence \frac{\partial }{\partial r}u\left ( 1,\theta \right ) =g\left ( \theta \right ) becomes\begin{equation} g\left ( \theta \right ) =\sum _{n=1}^{\infty }2B_{n}n\cos \left ( 2n\theta \right ) \tag{8} \end{equation} Multiplying by \cos \left ( 2m\theta \right ) and integrating gives\begin{align} \int _{0}^{\frac{\pi }{2}}g\left ( \theta \right ) \cos \left ( 2m\theta \right ) d\theta & =\int _{0}^{\frac{\pi }{2}}\cos \left ( 2m\theta \right ) \sum _{n=1}^{\infty }2B_{n}n\cos \left ( 2n\theta \right ) d\theta \nonumber \\ & =\sum _{n=1}^{\infty }2nB_{n}\int _{0}^{\frac{\pi }{2}}\cos \left ( 2m\theta \right ) \cos \left ( 2n\theta \right ) d\theta \tag{9} \end{align}

As in the last part, the integral on right gives \frac{\pi }{4} when n=m and zero otherwise, hence\begin{align*} \int _{0}^{\frac{\pi }{2}}g\left ( \theta \right ) \cos \left ( 2n\theta \right ) d\theta & =2nB_{n}\frac{\pi }{4}\\ B_{n} & =\frac{2}{\pi n}\int _{0}^{\frac{\pi }{2}}g\left ( \theta \right ) \cos \left ( 2n\theta \right ) d\theta \qquad n=1,2,3,\cdots \end{align*}

Therefore the final solution is from (7) and (9)\begin{align*} u\left ( r,\theta \right ) & =B_{0}+\sum _{n=1}^{\infty }B_{n}r^{2n}\cos \left ( 2n\theta \right ) \\ & =B_{0}+\sum _{n=1}^{\infty }\left ( \frac{2}{\pi n}\int _{0}^{\frac{\pi }{2}}g\left ( \theta \right ) \cos \left ( 2m\theta \right ) d\theta \right ) r^{2n}\cos \left ( 2n\theta \right ) \end{align*}

The unknown constant B_{0} can be found if given the initial temperature as was done in problem 2.5.2 part (c). To answer the last part. Using (8) and integrating\begin{align*} \int _{0}^{\frac{\pi }{2}}g\left ( \theta \right ) d\theta & =\int _{0}^{\frac{\pi }{2}}\sum _{n=1}^{\infty }2nB_{n}\cos \left ( 2n\theta \right ) d\theta \\ & =\sum _{n=1}^{\infty }2nB_{n}\int _{0}^{\frac{\pi }{2}}\cos \left ( 2n\theta \right ) d\theta \end{align*}

But \begin{align*} \int _{0}^{\frac{\pi }{2}}\cos \left ( 2n\theta \right ) d\theta & =\left [ \frac{\sin \left ( 2n\theta \right ) }{2n}\right ] _{0}^{\frac{\pi }{2}}\\ & =\frac{1}{2n}\left ( \sin \frac{2n}{2}\pi -0\right ) \\ & =\frac{1}{2n}\left ( \sin n\pi -0\right ) \\ & =0 \end{align*}

Since n is an integer. This condition physically means the same as in part (b) problem 2.5.2. Which is, since at steady state the flux must be zero on all boundaries, and g\left ( \theta \right ) represents the flux over the surface of the quarter circle, then the integral of the flux must be zero. This means there is no thermal energy flowing across the boundary.

2.4.4 Problem 2.5.8(b) (problem 4)

pict

The Laplace PDE in polar coordinates is  \begin{equation} r^{2}\frac{\partial ^{2}u}{\partial r^{2}}+r\frac{\partial u}{\partial r}+\frac{\partial ^{2}u}{\partial \theta ^{2}}=0 \tag{A} \end{equation} With\begin{align} \frac{\partial u}{\partial r}\left ( a,\theta \right ) & =0\nonumber \\ u\left ( b,\theta \right ) & =g\left ( \theta \right ) \tag{B} \end{align}

Assuming the solution can be written as u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) And substituting this assumed solution back into the (A) gives r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 Dividing the above by R\Theta gives\begin{align*} r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}+\frac{\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R} & =-\frac{\Theta ^{\prime \prime }}{\Theta } \end{align*}

Since each side depends on different independent variable and they are equal, they must be equal to same constant. say \lambda . r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}=-\frac{\Theta ^{\prime \prime }}{\Theta }=\lambda This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to each ODE. This results in\begin{align} \Theta ^{\prime \prime }+\lambda \Theta & =0\tag{1}\\ \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \end{align}

And\begin{align} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R & =0\tag{2}\\ R^{\prime }\left ( a\right ) & =0\nonumber \end{align}

Starting with (1) Case \lambda <0 The solution is \Theta \left ( \theta \right ) =A\cosh \left ( \sqrt{\lambda }\theta \right ) +B\sinh \left ( \sqrt{\lambda }\theta \right ) First B.C. gives\begin{align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ A\cosh \left ( -\sqrt{\lambda }\pi \right ) +B\sinh \left ( -\sqrt{\lambda }\pi \right ) & =A\cosh \left ( \sqrt{\lambda }\pi \right ) +B\sinh \left ( \sqrt{\lambda }\pi \right ) \\ A\cosh \left ( \sqrt{\lambda }\pi \right ) -B\sinh \left ( \sqrt{\lambda }\pi \right ) & =A\cosh \left ( \sqrt{\lambda }\pi \right ) +B\sinh \left ( \sqrt{\lambda }\pi \right ) \\ 2B\sinh \left ( \sqrt{\lambda }\pi \right ) & =0 \end{align*}

But \sinh \left ( \sqrt{\lambda }\pi \right ) =0 only at zero and \lambda \neq 0, hence B=0 and the solution becomes\begin{align*} \Theta \left ( \theta \right ) & =A\cosh \left ( \sqrt{\lambda }\theta \right ) \\ \Theta ^{\prime }\left ( \theta \right ) & =A\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\theta \right ) \end{align*}

Applying the second B.C. gives\begin{align*} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \\ A\sqrt{\lambda }\cosh \left ( -\sqrt{\lambda }\pi \right ) & =A\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\pi \right ) \\ A\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\pi \right ) & =A\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\pi \right ) \\ 2A\sqrt{\lambda }\cosh \left ( \sqrt{\lambda }\pi \right ) & =0 \end{align*}

But \cosh \left ( \sqrt{\lambda }\pi \right ) \neq 0 hence A=0. Therefore trivial solution and \lambda <0 is not an eigenvalue.

Case \lambda =0 The solution is \Theta =A\theta +B. Applying the first B.C. gives\begin{align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ -A\pi +B & =\pi A+B\\ 2\pi A & =0\\ A & =0 \end{align*}

And the solution becomes \Theta =B_{0}. A constant. Hence \lambda =0 is an eigenvalue.

Case \lambda >0

The solution becomes\begin{align*} \Theta & =A\cos \left ( \sqrt{\lambda }\theta \right ) +B\sin \left ( \sqrt{\lambda }\theta \right ) \\ \Theta ^{\prime } & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\theta \right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }\theta \right ) \end{align*}

Applying first B.C. gives\begin{align} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ A\cos \left ( -\sqrt{\lambda }\pi \right ) +B\sin \left ( -\sqrt{\lambda }\pi \right ) & =A\cos \left ( \sqrt{\lambda }\pi \right ) +B\sin \left ( \sqrt{\lambda }\pi \right ) \nonumber \\ A\cos \left ( \sqrt{\lambda }\pi \right ) -B\sin \left ( \sqrt{\lambda }\pi \right ) & =A\cos \left ( \sqrt{\lambda }\pi \right ) +B\sin \left ( \sqrt{\lambda }\pi \right ) \nonumber \\ 2B\sin \left ( \sqrt{\lambda }\pi \right ) & =0 \tag{3} \end{align}

Applying second B.C. gives\begin{align} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \\ -A\sqrt{\lambda }\sin \left ( -\sqrt{\lambda }\pi \right ) +B\sqrt{\lambda }\cos \left ( -\sqrt{\lambda }\pi \right ) & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }\pi \right ) \nonumber \\ A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }\pi \right ) & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) +B\sqrt{\lambda }\cos \left ( \sqrt{\lambda }\pi \right ) \nonumber \\ A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) & =-A\sqrt{\lambda }\sin \left ( \sqrt{\lambda }\pi \right ) \nonumber \\ 2A\sin \left ( \sqrt{\lambda }\pi \right ) & =0 \tag{4} \end{align}

Equations (3,4) can be both zero only if A=B=0 which gives trivial solution, or when \sin \left ( \sqrt{\lambda }\pi \right ) =0. Therefore taking \sin \left ( \sqrt{\lambda }\pi \right ) =0 gives a non-trivial solution. Hence\begin{align*} \sqrt{\lambda }\pi & =n\pi \qquad n=1,2,3,\cdots \\ \lambda _{n} & =n^{2}\qquad n=1,2,3,\cdots \end{align*}

Hence the solution for \Theta is\begin{equation} \Theta =A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \tag{5} \end{equation} Now the R equation is solved

The case for \lambda =0 gives\begin{align*} r^{2}R^{\prime \prime }+rR^{\prime } & =0\\ R^{\prime \prime }+\frac{1}{r}R^{\prime } & =0\qquad r\neq 0 \end{align*}

As was done in last problem, the solution to this is R\left ( r\right ) =A\ln \left \vert r\right \vert +C Since r>0 no need to keep worrying about \left \vert r\right \vert and is removed for simplicity. Applying the B.C. gives R^{\prime }=A\frac{1}{r} Evaluating at r=a gives 0=A\frac{1}{a} Hence A=0, and the solution becomes R\left ( r\right ) =C_{0} Which is a constant.

Case \lambda >0 The ODE in this case is r^{2}R^{\prime \prime }+rR^{\prime }-n^{2}R=0\qquad n=1,2,3,\cdots Let R=r^{p}, the above becomes\begin{align*} r^{2}p\left ( p-1\right ) r^{p-2}+rpr^{p-1}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) r^{p}+pr^{p}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) +p-n^{2} & =0\\ p^{2} & =n^{2}\\ p & =\pm n \end{align*}

Hence the solution is R_{n}\left ( r\right ) =Cr^{n}+D\frac{1}{r^{n}}\qquad n=1,2,3,\cdots Applying the boundary condition R^{\prime }\left ( a\right ) =0 gives\begin{align*} R_{n}^{\prime }\left ( r\right ) & =nC_{n}r^{n-1}-nD_{n}\frac{1}{r^{n+1}}\\ 0 & =R_{n}^{\prime }\left ( a\right ) \\ & =nC_{n}a^{n-1}-nD_{n}\frac{1}{a^{n+1}}\\ & =nC_{n}a^{2n}-nD_{n}\\ & =C_{n}a^{2n}-D_{n}\\ D_{n} & =C_{n}a^{2n} \end{align*}

The solution becomes\begin{align*} R_{n}\left ( r\right ) & =C_{n}r^{n}+C_{n}a^{2n}\frac{1}{r^{n}}\qquad n=1,2,3,\cdots \\ & =C_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \end{align*}

Hence the complete solution for R\left ( r\right ) is\begin{equation} R\left ( r\right ) =C_{0}+\sum _{n=1}^{\infty }C_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \tag{6} \end{equation} Using (5),(6)  gives\begin{align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ u\left ( r,\theta \right ) & =\left [ C_{0}+\sum _{n=1}^{\infty }C_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \right ] \left [ A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ] \\ & =D_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) C_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( n\theta \right ) C_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \end{align*}

Where D_{0}=C_{0}A_{0}. To simplify more, A_{n}C_{n} is combined to A_{n} and B_{n}C_{n} is combined to B_{n}. The full solution is u\left ( r,\theta \right ) =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \sin \left ( n\theta \right ) The final nonhomogeneous B.C. is applied.\begin{align*} u\left ( b,\theta \right ) & =g\left ( \theta \right ) \\ g\left ( \theta \right ) & =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \sin \left ( n\theta \right ) \end{align*}

For n=0, integrating both sides give\begin{align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}d\theta \\ D_{0} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta \end{align*}

For n>0, multiplying both sides by \cos \left ( m\theta \right ) and integrating gives\begin{align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \end{align*}

Hence\begin{align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \tag{7} \end{align}

But \begin{align*} \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta & =\pi \qquad n=m\neq 0\\ \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta & =0\qquad n\neq m \end{align*}

And \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta =0\qquad And \int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta =0 Then (7) becomes\begin{align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta & =\pi A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \nonumber \\ A_{n} & =\frac{1}{\pi }\frac{\int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta }{b^{n}+\frac{a^{2n}}{b^{n}}} \tag{8} \end{align}

Again, multiplying both sides by \sin \left ( m\theta \right ) and integrating gives\begin{align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \end{align*}

Hence\begin{align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \tag{9} \end{align}

But \begin{align*} \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta & =\pi \qquad n=m\neq 0\\ \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta & =0\qquad n\neq m \end{align*}

And \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta =0 And \int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta =0 Then (9) becomes\begin{align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta & =\pi B_{n}\left ( b^{n}+\frac{a^{2n}}{b^{n}}\right ) \\ B_{n} & =\frac{1}{\pi }\frac{\int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta }{b^{n}+\frac{a^{2n}}{b^{n}}} \end{align*}

This complete the solution. Summary\begin{align*} u\left ( r,\theta \right ) & =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( r^{n}+\frac{a^{2n}}{r^{n}}\right ) \sin \left ( n\theta \right ) \\ D_{0} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta \\ A_{n} & =\frac{1}{\pi }\frac{\int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta }{b^{n}+\frac{a^{2n}}{b^{n}}}\\ B_{n} & =\frac{1}{\pi }\frac{\int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta }{b^{n}+\frac{a^{2n}}{b^{n}}} \end{align*}

The following are some plots of the solution.

pict
Figure 2.10:Solution using f(\theta )=\sin (3 \theta ^2), a=0.3, b=0.5

pict
Figure 2.11:Solution using f(\theta )=3 \theta , a=0.3, b=0.6

pict
Figure 2.12:Solution using f(\theta )=100 \theta , a=0.1, b=0.4

2.4.5 Problem 2.5.14 (problem 5)

pict

\begin{align*} \frac{-1}{k}\frac{\partial u}{\partial t} & =\frac{\partial ^{2}u}{\partial x^{2}}\\ u\left ( 0,t\right ) & =0\\ u\left ( L,t\right ) & =0\\ u\left ( x,0\right ) & =f\left ( x\right ) \end{align*}

Assume u\left ( x,t\right ) =XT. Hence the PDE becomes\begin{align*} -\frac{1}{k}T^{\prime }X & =X^{\prime \prime }T\\ -\frac{1}{k}\frac{T^{\prime }}{T} & =\frac{X^{\prime \prime }}{X} \end{align*}

Hence, for\lambda real -\frac{1}{k}\frac{T^{\prime }}{T}=\frac{X^{\prime \prime }}{X}=-\lambda The space ODE was solved before. Only positive eigenvalues exist. The solution is\begin{align*} X\left ( x\right ) & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \sqrt{\lambda _{n}}x\right ) \\ \lambda _{n} & =\left ( \frac{n\pi }{L}\right ) ^{2}\qquad n=1,2,3,\cdots \end{align*}

The time ODE becomes\begin{align*} T_{n}^{\prime } & =\lambda _{n}T_{n}\\ T_{n}^{\prime }-\lambda _{n}T_{n} & =0 \end{align*}

With solution\begin{align*} T_{n}\left ( t\right ) & =A_{n}e^{\lambda _{n}t}\\ T\left ( t\right ) & =\sum _{n=1}^{\infty }A_{n}e^{\lambda _{n}t} \end{align*}

For the same eigenvalues. Therefore the full solution is\begin{equation} u\left ( x,t\right ) =\sum _{n=1}^{\infty }C_{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} \tag{1} \end{equation} Where C_{n}=A_{n}B_{n}. Applying initial conditions gives f\left ( x\right ) =\sum _{n=1}^{\infty }C_{n}\sin \left ( \frac{n\pi }{L}x\right ) Multiplying by \sin \left ( \frac{m\pi }{L}x\right ) and integrating results in\begin{align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx & =\int _{0}^{L}\sin \left ( \frac{m\pi }{L}x\right ) \sum _{n=1}^{\infty }C_{n}\sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =\sum _{n=1}^{\infty }C_{n}\int _{0}^{L}\sin \left ( \frac{m\pi }{L}x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =C_{m}\frac{L}{2} \end{align*}

Therefore C_{n}=\frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx The solution (1) becomes\begin{equation} u\left ( x,t\right ) =\frac{2}{L}\sum _{n=1}^{\infty }\left ( \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\right ) \left ( \sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}\right ) \tag{2} \end{equation} Assuming initial data is changed to f\left ( x\right ) +\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) then f\left ( x\right ) +\frac{1}{m}\sin \left ( \frac{m\pi }{L}x\right ) =\sum _{n=1}^{\infty }C_{n}\sin \left ( \frac{n\pi }{L}x\right ) Multiplying both sides by \sin \left ( \frac{m\pi }{L}x\right ) and integrating\begin{align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx+\frac{1}{m}\int _{0}^{L}\sin ^{2}\left ( \frac{m\pi }{L}x\right ) dx & =\int _{0}^{L}\sin \left ( \frac{m\pi }{L}x\right ) \sum _{n=1}^{\infty }C_{n}\sin \left ( \frac{n\pi }{L}x\right ) \\ \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx+\frac{1}{m}\frac{L}{2} & =C_{m}\frac{L}{2}\\ C_{n} & =\frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx+\frac{1}{n} \end{align*}

Therefore, the new solution is\begin{align*} \tilde{u}\left ( x,t\right ) & =\sum _{n=1}^{\infty }\left ( \frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx+\frac{1}{n}\right ) \sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}\\ & =\sum _{n=1}^{\infty }\frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}+\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}\\ & =\sum _{n=1}^{\infty }\frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}+\sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} \end{align*}

But \sum _{n=1}^{\infty }\frac{2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t}=u\left ( x,t\right ) , therefore the above can be written as \tilde{u}\left ( x,t\right ) =u\left ( x,t\right ) +\sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} For large n, the difference between initial data f\left ( x\right ) and f\left ( x\right ) +\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) is very small, since \frac{1}{n}\rightarrow 0. However, the effect in the solution above, due to the presence of e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} is that \frac{1}{n}e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} increases now for large n, since the exponential is to the positive power, and it grows at a faster rate than \frac{1}{n} grows small as n increases, with the net effect that the produce blow up for large n. This is because the power of the exponential is positive and not negative is normally would be the case.  Also by looking at the series of e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} which is 1+\left ( \frac{n\pi }{L}\right ) ^{4}\frac{t^{2}}{2}+\left ( \frac{n\pi }{L}\right ) ^{6}\frac{t^{3}}{3!}+\cdots , then \frac{1}{n}e^{\left ( \frac{n\pi }{L}\right ) ^{2}t} expands to \frac{1}{n}+\frac{1}{n}\left ( \frac{n\pi }{L}\right ) ^{4}\frac{t^{2}}{2}+\frac{1}{n}\left ( \frac{n\pi }{L}\right ) ^{6}\frac{t^{3}}{3!}+\cdots which becomes very large for large n.

In the normal PDE case, the above solution would have instead been the following \tilde{u}\left ( x,t\right ) =u\left ( x,t\right ) +\sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\left ( \frac{n\pi }{L}\right ) ^{2}t} And now as n\rightarrow \infty then \sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\left ( \frac{n\pi }{L}\right ) ^{2}t}\rightarrow 0 as well.  Notice that \sin \left ( \frac{n\pi }{L}x\right ) term is not important for this analysis, as its value oscillates between -1 and +1.

2.4.6 Problem 2.5.22 (problem 6)

pict

The force exerted by the fluid on the cylinder is given by equation 2.5.56, page 77 of the text as

\bar{F}=-\int _{0}^{2\pi }p\left \langle \cos \theta ,\sin \theta \right \rangle ad\theta Where a is the cylinder radius, p is the fluid pressure. This vector has 2 components. The x component is the drag force and the y component is the left force as illustrated by this diagram.

pict

Therefore the drag force (per unit length) is\begin{equation} F_{x}=-\int _{0}^{2\pi }p\cos \theta ad\theta \tag{1} \end{equation} Now the pressure p needs to be determined in order to compute the above. The fluid pressure p is related to fluid flow velocity by the Bernoulli condition\begin{equation} p+\frac{1}{2}\rho \left \vert \bar{u}\right \vert ^{2}=C \tag{2} \end{equation} Where C is some constant and \rho is fluid density and \bar{u} is the flow velocity vector. Hence in order to find p, the fluid velocity is needed. But the fluid velocity is given by \begin{align*} \bar{u} & =u_{r}\hat{r}+u_{\theta }\hat{\theta }\\ & =\frac{1}{r}\frac{\partial \Psi }{\partial \theta }\hat{r}-\frac{\partial \Psi }{\partial r}\hat{\theta } \end{align*}

Since the radial component of the fluid velocity is zero at the surface if the cylinder (This is one of the boundary conditions used to derive the solution), then only the tangential component comes into play. Hence \left \vert \bar{u}\right \vert =\left \vert -\frac{\partial \Psi }{\partial r}\right \vert but \Psi \left ( r,\theta \right ) =c_{1}\ln \left ( \frac{r}{a}\right ) +u_{0}\left ( r-\frac{a^{2}}{r}\right ) \sin \theta Therefore \frac{\partial \Psi }{\partial r}=\frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \theta And hence\begin{align*} \left \vert \bar{u}\right \vert & =\left \vert -\frac{\partial \Psi }{\partial r}\right \vert \\ & =\left \vert -\frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \theta \right \vert \end{align*}

At the surface r=a, hence \left \vert \bar{u}\right \vert =\left \vert -\frac{c_{1}}{a}+2u_{0}\sin \theta \right \vert Substituting this into (2) in order to solve for pressure p gives\begin{align*} p+\frac{1}{2}\rho \left ( -\frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ^{2} & =C\\ p & =C-\frac{1}{2}\rho \left ( -\frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ^{2} \end{align*}

Substituting the above into (1) in order to solve for the drag gives F_{x}=-\int _{0}^{2\pi }\left [ C-\frac{1}{2}\rho \left ( -\frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ^{2}\right ] \cos \theta ad\theta The above is the quantity that needs to be shown to be zero. F_{x}=-aC\int _{0}^{2\pi }\cos \theta d\theta -\frac{a}{2}\rho \int _{0}^{2\pi }\left ( -\frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ^{2}\cos \theta d\theta But \int _{0}^{2\pi }\cos \theta d\theta =0 hence the above simplifies to\begin{align*} F_{x} & =-\frac{a}{2}\rho \int _{0}^{2\pi }\left ( -\frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ^{2}\cos \theta d\theta \\ & =-\frac{a}{2}\rho \int _{0}^{2\pi }\frac{c_{1}^{2}}{a^{2}}\cos \theta +4u_{0}^{2}\sin ^{2}\theta \cos \theta -4\frac{c_{1}}{a}u_{0}\sin \theta \cos \theta d\theta \\ & =-\frac{a}{2}\rho \left [ \frac{c_{1}^{2}}{a^{2}}\int _{0}^{2\pi }\cos \theta d\theta +4u_{0}^{2}\int _{0}^{2\pi }\sin ^{2}\theta \cos \theta d\theta -4\frac{c_{1}}{a}u_{0}\int _{0}^{2\pi }\sin \theta \cos \theta d\theta \right ] \end{align*}

But \int _{0}^{2\pi }\cos \theta d\theta =0 and \int _{0}^{2\pi }\sin \theta \cos \theta d\theta =0 hence the above reduces to F_{x}=-4a\rho u_{0}^{2}\int _{0}^{2\pi }\sin ^{2}\theta \cos \theta d\theta But \sin ^{2}\theta =\frac{1}{2}-\frac{1}{2}\cos \left ( 2\theta \right ) and the above becomes\begin{align*} F_{x} & =-4a\rho u_{0}^{2}\int _{0}^{2\pi }\left ( \frac{1}{2}-\frac{1}{2}\cos \left ( 2\theta \right ) \right ) \cos \theta d\theta \\ & =-4a\rho u_{0}^{2}\left ( \frac{1}{2}\int _{0}^{2\pi }\cos \theta d\theta -\frac{1}{2}\int _{0}^{2\pi }\cos \left ( 2\theta \right ) \cos \theta d\theta \right ) \end{align*}

But \int _{0}^{2\pi }\cos \theta d\theta =0 and by orthogonality of \cos function \int _{0}^{2\pi }\cos \left ( 2\theta \right ) \cos \left ( \theta \right ) d\theta =0 as well. Therefore the above reduces to F_{x}=0 The drag force (x component of the force exerted by fluid on the cylinder) is zero just outside the surface of the surface of the cylinder. Which is what the question asks to show.

2.4.7 Problem 2.5.24 (problem 7)

pict

Introduction. The stream velocity \bar{u} in Cartesian coordinates is \begin{align} \bar{u} & =u\hat{\imath }+v\hat{\jmath }\nonumber \\ & =\frac{\partial \Psi }{\partial y}\hat{\imath }-\frac{\partial \Psi }{\partial x}\hat{\jmath } \tag{1} \end{align}

Where \Psi is the stream function which satisfies Laplace PDE in 2D \nabla ^{2}\Psi =0. In Polar coordinates the above becomes\begin{align} \bar{u} & =u_{r}\hat{r}+u_{\theta }\hat{\theta }\nonumber \\ & =\frac{1}{r}\frac{\partial \Psi }{\partial \theta }\hat{r}-\frac{\partial \Psi }{\partial r}\hat{\theta } \tag{2} \end{align}

The solution to \nabla ^{2}\Psi =0 was found under the following conditions

1.
When r very large, or in other words, when too far away from the cylinder or the wing, the flow lines are horizontal only. This means at r=\infty the y component of \bar{u} in (1) is zero. This means \frac{\partial \Psi \left ( x,y\right ) }{\partial x}=0. Therefore \Psi \left ( x,y\right ) =u_{0}y where u_{0} is some constant. In polar coordinates this implies \Psi \left ( r,\theta \right ) =u_{0}r\sin \theta , since y=r\sin \theta .
2.
The second condition is that radial component of \bar{u} is zero. In other words, \frac{1}{r}\frac{\partial \Psi }{\partial \theta }=0 when r=a, where a is the radius of the cylinder.
3.
In addition to the above two main condition, there is a condition that \Psi =0 at r=0

Using the above three conditions, the solution to \nabla ^{2}\Psi =0 was derived in lecture Sept. 30, 2016, to be \Psi \left ( r,\theta \right ) =c_{1}\ln \left ( \frac{r}{a}\right ) +u_{0}\left ( r-\frac{a^{2}}{r}\right ) \sin \theta Using the above solution, the velocity \bar{u} can now be found using the definition in (2) as follows\begin{align*} \frac{1}{r}\frac{\partial \Psi }{\partial \theta } & =\frac{1}{r}u_{0}\left ( r-\frac{a^{2}}{r}\right ) \cos \theta \\ \frac{\partial \Psi }{\partial r} & =\frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \theta \end{align*}

Hence, in polar coordinates\begin{equation} \fbox{$\bar{u}=\left ( \frac{1}{r}u_0\left ( r-\frac{a^2}{r}\right ) \cos \theta \right ) \hat{r}-\left ( \frac{c_1}{r}+u_0\left ( 1+\frac{a^2}{r^2}\right ) \sin \theta \right ) \hat{\theta }$} \tag{3} \end{equation} Now the question posed can be answered. The circulation is given by \Gamma =\int _{0}^{2\pi }u_{\theta }rd\theta But from (3) u_{\theta }=-\left ( \frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \theta \right ) , therefore the above becomes \Gamma =\int _{0}^{2\pi }-\left ( \frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \theta \right ) rd\theta At r=a the above simplifies to\begin{align*} \Gamma & =\int _{0}^{2\pi }-\left ( \frac{c_{1}}{a}+2u_{0}\sin \theta \right ) ad\theta \\ & =\int _{0}^{2\pi }-c_{1}-2au_{0}\sin \theta d\theta \\ & =-\int _{0}^{2\pi }c_{1}d\theta -2au_{0}\int _{0}^{2\pi }\sin \theta d\theta \end{align*}

But \int _{0}^{2\pi }\sin \theta d\theta =0, hence\begin{align*} \Gamma & =-c_{1}\int _{0}^{2\pi }d\theta \\ & =-2c_{1}\pi \end{align*}

Since \Gamma <0, then c_{1}>0. Now that c_{1} is known to be positive, then the velocity is calculated at \theta =\frac{-\pi }{2} and then at \theta =\frac{+\pi }{2} to see which is larger. Since this is calculated at r=a, then the radial velocity is zero and only u_{\theta } needs to be evaluated in (3).  

At \theta =\frac{-\pi }{2}\begin{align*} u_{\left ( \frac{-\pi }{2}\right ) } & =-\left ( \frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \left ( \frac{-\pi }{2}\right ) \right ) \\ & =-\left ( \frac{c_{1}}{r}-u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \left ( \frac{\pi }{2}\right ) \right ) \\ & =-\left ( \frac{c_{1}}{r}-u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \right ) \end{align*}

At r=a\begin{align} u_{\left ( \frac{-\pi }{2}\right ) } & =-\left ( \frac{c_{1}}{a}-2u_{0}\right ) \nonumber \\ & =-\frac{c_{1}}{a}+2u_{0} \tag{4} \end{align}

At \theta =\frac{+\pi }{2}\begin{align*} u_{\left ( \frac{+\pi }{2}\right ) } & =-\left ( \frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \sin \left ( \frac{\pi }{2}\right ) \right ) \\ & =-\left ( \frac{c_{1}}{r}+u_{0}\left ( 1+\frac{a^{2}}{r^{2}}\right ) \right ) \end{align*}

At r=a\begin{align} u_{\left ( \frac{-\pi }{2}\right ) } & =-\left ( \frac{c_{1}}{a}+2u_{0}\right ) \nonumber \\ & =-\frac{c_{1}}{a}-2u_{0} \tag{5} \end{align}

Comparing (4),(5), and since c_{1}>0, then the magnitude of u_{\theta } at \frac{\pi }{2} is larger than the magnitude of u_{\theta } at \frac{-\pi }{2}. Which implies the stream flows faster above the cylinder than below it.