\rho \frac{\partial ^{2}u}{\partial t^{2}}=T_{0}\frac{\partial ^{2}u}{\partial t^{2}}+\alpha u+\beta \frac{\partial u}{\partial t}
The term \alpha u represents the stiffness in the system. This is a restoring force, and acts also opposite to direction of motion and is proportional to current displacement from equilibrium position. Hence \alpha <0 also.
Let u=X\left ( x\right ) T\left ( t\right ) . Substituting this into the above PDE gives \rho T^{\prime \prime }X=T_{0}X^{\prime \prime }T+\alpha XT+\beta T^{\prime }X
To make each side depends on one variable only, we move \rho \left ( x\right ) ,\beta \left ( x\right ) to the right side since these depends on x. Then dividing by \rho \left ( x\right ) gives \frac{T^{\prime \prime }}{T}-\frac{\beta }{\rho }\frac{T^{\prime }}{T}=T_{0}\frac{X^{\prime \prime }}{\rho X}+\frac{\alpha }{\rho }
Or\begin{align*} T^{\prime \prime }-cT^{\prime }+\lambda T & =0\\ X^{\prime \prime }+X\left ( \frac{\alpha }{T_{0}}+\lambda \frac{\rho }{T_{0}}\right ) & =0 \end{align*}
From above, the spatial ODE is
\begin{equation} X^{\prime \prime }+X\left ( \frac{\alpha }{T_{0}}+\lambda \frac{\rho }{T_{0}}\right ) =0 \tag{1} \end{equation}
Comparing (1) and (2) we see that\begin{align*} p & =1\\ q & =\frac{\alpha }{T_{0}}\\ \sigma & =\frac{\rho }{T_{0}} \end{align*}
To solve the time ODE T^{\prime \prime }-cT^{\prime }+\lambda T=0, since this is second order linear with constant coefficients, then the characteristic equation is\begin{align*} r^{2}-cr+\lambda & =0\\ r & =\frac{-B}{2A}\pm \frac{\sqrt{B^{2}-4AC}}{2A}\\ & =\frac{c}{2}\pm \frac{\sqrt{c^{2}-4\lambda }}{2} \end{align*}
Hence the two solutions are \begin{align*} T_{1}\left ( t\right ) & =e^{\left ( \frac{c}{2}+\frac{\sqrt{c^{2}-4\lambda }}{2}\right ) t}\\ T_{2}\left ( t\right ) & =e^{\left ( \frac{c}{2}-\frac{\sqrt{c^{2}-4\lambda }}{2}\right ) t} \end{align*}
The general solution is linear combination of the above two solution, therefore final solution is T\left ( t\right ) =c_{1}e^{\left ( \frac{c}{2}+\frac{\sqrt{c^{2}-4\lambda }}{2}\right ) t}+c_{2}e^{\left ( \frac{c}{2}-\frac{\sqrt{c^{2}-4\lambda }}{2}\right ) t}
Where c_{1},c_{2} are arbitrary constants of integration.
\frac{d^{2}\phi }{dx^{2}}+\alpha \left ( x\right ) \frac{d\phi }{dx}+\left ( \lambda \beta \left ( x\right ) +\gamma \left ( x\right ) \right ) \phi =0
Then we need to satisfy\begin{align*} H\left ( x\right ) & =P\left ( x\right ) \\ H\left ( x\right ) \alpha \left ( x\right ) & =P^{\prime }\left ( x\right ) \end{align*}
Therefore, by combining the above, we obtain one ODE equation to solve for H\left ( x\right ) H^{\prime }\left ( x\right ) =H\left ( x\right ) \alpha \left ( x\right )
QED
\begin{align} x^{2}\phi ^{\prime \prime }+x\phi ^{\prime }+\lambda \phi & =0\tag{1}\\ \phi \left ( 1\right ) & =0\nonumber \\ \phi \left ( b\right ) & =0\nonumber \end{align}
Multiplying (1) by \frac{1}{x} where x\neq 0 gives\begin{equation} x\phi ^{\prime \prime }+\phi ^{\prime }+\frac{\lambda }{x}\phi =0 \tag{2} \end{equation}
And since the given boundary conditions also satisfy the Sturm-Liouville boundary conditions, then (2) is a regular Sturm-Liouville ODE.
Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular Sturm-Liouville ODE, which relates the eigenvalues to the eigenfunctions\begin{align} \lambda & =\frac{-\left [ p\phi \phi ^{\prime }\right ] _{x=1}^{x=b}+\int _{1}^{b}p\left ( \phi ^{\prime }\right ) ^{2}-q\phi ^{2}dx}{\int _{1}^{b}\phi ^{2}\sigma dx}\tag{5.3.8}\\ & =\frac{-\left [ p\left ( b\right ) \phi \left ( b\right ) \phi ^{\prime }\left ( b\right ) -p\left ( 1\right ) \phi \left ( 1\right ) \phi ^{\prime }\left ( b\right ) \right ] +\int _{1}^{b}p\left ( \phi ^{\prime }\right ) ^{2}-q\phi ^{2}dx}{\int _{1}^{b}\phi ^{2}\sigma dx}\nonumber \end{align}
Using p=x,q=0,\sigma =\frac{1}{x} and using \phi \left ( 1\right ) =0,\phi \left ( b\right ) =0, then the above simplifies to \lambda =\frac{-\int _{1}^{b}p\left ( \phi ^{\prime }\right ) ^{2}dx}{\int _{1}^{b}\frac{\phi ^{2}}{x}dx}
The possible values of \lambda >0 are determined by trying to solve the ODE and seeing which \lambda produces non-trivial solutions given the boundary conditions. The ODE to solve is (1) above. Here it is again\begin{equation} x^{2}\phi ^{\prime \prime }+x\phi ^{\prime }+\lambda \phi =0 \tag{1} \end{equation}
Case \lambda =0.
Equation (1) becomes\begin{align*} x^{2}\phi ^{\prime \prime }+x\phi ^{\prime } & =0\\ x\phi ^{\prime \prime }+\phi ^{\prime } & =0\\ \frac{d}{dx}\left ( x\phi ^{\prime }\right ) & =0 \end{align*}
Hence x\phi ^{\prime }=c_{1} where c_{1} is constant. Therefore \frac{d}{dx}\phi =\frac{c_{1}}{x} or\begin{align*} \phi & =c_{1}\int \frac{1}{x}dx+c_{2}\\ & =c_{1}\ln \left \vert x\right \vert +c_{2} \end{align*}
At x=1, \phi \left ( 1\right ) =0, hence 0=c_{1}\ln \left ( 1\right ) +c_{2}
Case \lambda >0
x^{2}\phi ^{\prime \prime }+x\phi ^{\prime }+\lambda \phi =0
Dividing by x^{p}\neq 0 gives the characteristic equation\begin{align*} p\left ( p-1\right ) +p+\lambda & =0\\ p^{2}-p+p+\lambda & =0\\ p^{2} & =-\lambda \end{align*}
Since \lambda \geq 0 then p is complex. Therefore the roots are p=\pm i\sqrt{\lambda }
To more easily use standard form of solution, the standard trick is to rewrite these solution in exponential form\begin{align*} \phi _{1}\left ( x\right ) & =e^{i\sqrt{\lambda }\ln x}\\ \phi _{2}\left ( x\right ) & =e^{-i\sqrt{\lambda }\ln x} \end{align*}
The general solution to (1) is linear combination of these two solutions, therefore\begin{equation} \phi \left ( x\right ) =c_{1}e^{i\sqrt{\lambda }\ln x}+c_{2}e^{-i\sqrt{\lambda }\ln x} \tag{2} \end{equation}
Hence the solution now simplifies to \phi \left ( x\right ) =c_{2}\sin \left ( \sqrt{\lambda }\ln x\right )
Therefore, there are infinite numbers of eigenvalues. The smallest is when n=1 given by \lambda _{1}=\left ( \frac{\pi }{\ln b}\right ) ^{2}
From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight function \sigma \left ( x\right ) \int _{a}^{b}\phi _{n}\left ( x\right ) \phi _{m}\left ( x\right ) \sigma \left ( x\right ) dx=0\qquad n\neq m
But \sin \left ( \frac{n\pi }{\ln b}z\right ) and \sin \left ( \frac{m\pi }{\ln b}z\right ) are orthogonal functions (now with weight 1). Hence the above gives 0 when n\neq m using standard orthogonality of the \sin functions we used before many times. QED.
The n^{th} eigenfunction is \phi _{n}\left ( x\right ) =\sin \left ( \frac{n\pi }{\ln b}\ln x\right )
Hence for n=1, The domain of \phi _{1}\left ( x\right ) is 0\cdots \pi . And there are no zeros inside this for \sin function not counting the end points. For n=2, the domain is 0\cdots 2\pi and \sin has one zero inside this (at \pi ), not counting end points. And for n=3, the domain is 0\cdots 3\pi and \sin has two zeros inside this (at \pi ,2\pi ), not counting end points. And so on. Hence \phi _{n}\left ( x\right ) has n-1 zeros not counting the end points.
The Sturm-Liouville ODE is \frac{d}{dx}\left ( p\phi ^{\prime }\right ) +q\phi =-\lambda \sigma \phi
Here a=0 and b=L. \begin{align*} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{a}^{b} & =\left . p\left ( u\frac{dv}{dx}-v\frac{du}{dx}\right ) \right \vert _{0}^{L}\\ & =\left [ p\left ( L\right ) \left ( u\left ( L\right ) \frac{dv}{dx}\left ( L\right ) -v\left ( L\right ) \frac{du}{dx}\left ( L\right ) \right ) -p\left ( 0\right ) \left ( u\left ( 0\right ) \frac{dv}{dx}\left ( 0\right ) -v\left ( 0\right ) \frac{du}{dx}\left ( 0\right ) \right ) \right ] \end{align*}
Substituting u\left ( L\right ) =v\left ( L\right ) =0 and \frac{dv}{dx}\left ( 0\right ) =\frac{du}{dx}\left ( 0\right ) =0 into the above (since there are the B.C. given) gives\begin{align*} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{a}^{b} & =\left [ p\left ( L\right ) \left ( 0\times \frac{dv}{dx}\left ( L\right ) -0\times \frac{du}{dx}\left ( L\right ) \right ) -p\left ( 0\right ) \left ( u\left ( 0\right ) \times 0-v\left ( 0\right ) \times 0\right ) \right ] \\ & =\left [ 0-0\right ] \\ & =0 \end{align*}
\begin{align} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{a}^{b} & =\left . p\left ( u\frac{dv}{dx}-v\frac{du}{dx}\right ) \right \vert _{b}^{a}\nonumber \\ & =\left [ p\left ( a\right ) \left ( u\left ( a\right ) v^{\prime }\left ( a\right ) -v\left ( a\right ) u^{\prime }\left ( a\right ) \right ) -p\left ( b\right ) \left ( u\left ( b\right ) v^{\prime }\left ( b\right ) -v\left ( b\right ) u^{\prime }\left ( b\right ) \right ) \right ] \nonumber \\ & =p\left ( a\right ) u\left ( a\right ) v^{\prime }\left ( a\right ) -p\left ( a\right ) v\left ( a\right ) u^{\prime }\left ( a\right ) -p\left ( b\right ) u\left ( b\right ) v^{\prime }\left ( b\right ) +p\left ( b\right ) v\left ( b\right ) u^{\prime }\left ( b\right ) \tag{1} \end{align}
We are given that u\left ( a\right ) =u\left ( b\right ) and v\left ( a\right ) =v\left ( b\right ) and p\left ( a\right ) u^{\prime }\left ( a\right ) =p\left ( b\right ) u^{\prime }\left ( b\right ) and p\left ( a\right ) v^{\prime }\left ( a\right ) =p\left ( b\right ) v^{\prime }\left ( b\right ) .
We start by replacing u\left ( a\right ) by u\left ( a\right ) and replacing v\left ( a\right ) by v\left ( b\right ) in (1), this gives\begin{align*} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{a}^{b} & =p\left ( a\right ) u\left ( b\right ) v^{\prime }\left ( a\right ) -p\left ( a\right ) v\left ( b\right ) u^{\prime }\left ( a\right ) -p\left ( b\right ) u\left ( b\right ) v^{\prime }\left ( b\right ) +p\left ( b\right ) v\left ( b\right ) u^{\prime }\left ( b\right ) \\ & =u\left ( b\right ) \left ( p\left ( a\right ) v^{\prime }\left ( a\right ) -p\left ( b\right ) v^{\prime }\left ( b\right ) \right ) +v\left ( b\right ) \left ( p\left ( b\right ) u^{\prime }\left ( b\right ) -p\left ( a\right ) u^{\prime }\left ( a\right ) \right ) \end{align*}
Now using p\left ( a\right ) u^{\prime }\left ( a\right ) =p\left ( b\right ) u^{\prime }\left ( b\right ) and p\left ( a\right ) v^{\prime }\left ( a\right ) =p\left ( b\right ) v^{\prime }\left ( b\right ) in the above gives\begin{align*} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{a}^{b} & =u\left ( b\right ) \left ( p\left ( b\right ) v^{\prime }\left ( b\right ) -p\left ( b\right ) v^{\prime }\left ( b\right ) \right ) +v\left ( b\right ) \left ( p\left ( b\right ) u^{\prime }\left ( b\right ) -p\left ( b\right ) u^{\prime }\left ( b\right ) \right ) \\ & =u\left ( b\right ) \left ( 0\right ) +v\left ( b\right ) \left ( 0\right ) \\ & =0-0\\ & =0 \end{align*}
p is constant. Hence\begin{align} \left . p\left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{0}^{L} & =\left . p\left ( u\frac{dv}{dx}-v\frac{du}{dx}\right ) \right \vert _{0}^{L}\nonumber \\ & =p\left [ \left ( u\left ( L\right ) v^{\prime }\left ( L\right ) -v\left ( L\right ) u^{\prime }\left ( L\right ) \right ) -\left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) \right ] \tag{1} \end{align}
We are given that \begin{align} u\left ( L\right ) +\alpha u\left ( 0\right ) +\beta u^{\prime }\left ( 0\right ) & =0\tag{2}\\ u^{\prime }\left ( L\right ) +\gamma u\left ( 0\right ) +\delta u^{\prime }\left ( 0\right ) & =0 \tag{3} \end{align}
And \begin{align} v\left ( L\right ) +\alpha v\left ( 0\right ) +\beta v^{\prime }\left ( 0\right ) & =0\tag{4}\\ v^{\prime }\left ( L\right ) +\gamma v\left ( 0\right ) +\delta v^{\prime }\left ( 0\right ) & =0 \tag{5} \end{align}
From (2), u\left ( L\right ) =-\alpha u\left ( 0\right ) -\beta u^{\prime }\left ( 0\right )
Simplifying\begin{align*} \left . \left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{0}^{L} & =\alpha u\left ( 0\right ) \gamma v\left ( 0\right ) +\alpha u\left ( 0\right ) \delta v^{\prime }\left ( 0\right ) +\beta u^{\prime }\left ( 0\right ) \gamma v\left ( 0\right ) +\beta u^{\prime }\left ( 0\right ) \delta v^{\prime }\left ( 0\right ) \\ & -\left ( \alpha v\left ( 0\right ) \gamma u\left ( 0\right ) +\alpha v\left ( 0\right ) \delta u^{\prime }\left ( 0\right ) +\beta v^{\prime }\left ( 0\right ) \gamma u\left ( 0\right ) +\beta v^{\prime }\left ( 0\right ) \delta u^{\prime }\left ( 0\right ) \right ) \\ & -u\left ( 0\right ) v^{\prime }\left ( 0\right ) +v\left ( 0\right ) u^{\prime }\left ( 0\right ) \\ & =\alpha u\left ( 0\right ) \gamma v\left ( 0\right ) +\alpha u\left ( 0\right ) \delta v^{\prime }\left ( 0\right ) +\beta u^{\prime }\left ( 0\right ) \gamma v\left ( 0\right ) +\beta u^{\prime }\left ( 0\right ) \delta v^{\prime }\left ( 0\right ) \\ & -\alpha v\left ( 0\right ) \gamma u\left ( 0\right ) -\alpha v\left ( 0\right ) \delta u^{\prime }\left ( 0\right ) -\beta v^{\prime }\left ( 0\right ) \gamma u\left ( 0\right ) -\beta v^{\prime }\left ( 0\right ) \delta u^{\prime }\left ( 0\right ) -u\left ( 0\right ) v^{\prime }\left ( 0\right ) +v\left ( 0\right ) u^{\prime }\left ( 0\right ) \end{align*}
Collecting\begin{align*} \left . \left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{0}^{L} & =\alpha \delta \left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) \\ & +\beta \delta \left ( u^{\prime }\left ( 0\right ) v^{\prime }\left ( 0\right ) -v^{\prime }\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) \\ & +\alpha \gamma \left ( u\left ( 0\right ) v\left ( 0\right ) -v\left ( 0\right ) u\left ( 0\right ) \right ) \\ & +\beta \gamma \left ( u^{\prime }\left ( 0\right ) v\left ( 0\right ) -v^{\prime }\left ( 0\right ) u\left ( 0\right ) \right ) \\ & -u\left ( 0\right ) v^{\prime }\left ( 0\right ) +v\left ( 0\right ) u^{\prime }\left ( 0\right ) \\ & =\alpha \delta \left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) +\beta \gamma \left ( u^{\prime }\left ( 0\right ) v\left ( 0\right ) -v^{\prime }\left ( 0\right ) u\left ( 0\right ) \right ) -\left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) \\ & =\alpha \delta \left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) -\beta \gamma \left ( v^{\prime }\left ( 0\right ) u\left ( 0\right ) -u^{\prime }\left ( 0\right ) v\left ( 0\right ) \right ) -\left ( u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) \right ) \end{align*}
Let u\left ( 0\right ) v^{\prime }\left ( 0\right ) -v\left ( 0\right ) u^{\prime }\left ( 0\right ) =\Delta then we see that the above is just\begin{align*} \left . \left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{0}^{L} & =\alpha \delta \left ( \Delta \right ) -\beta \gamma \left ( \Delta \right ) -\left ( \Delta \right ) \\ & =\Delta \left ( \alpha \delta -\beta \gamma -1\right ) \end{align*}
Hence, for \left . \left ( uv^{\prime }-vu^{\prime }\right ) \right \vert _{0}^{L}=0, we need \alpha \delta -\beta \gamma -1=0
We are given that \begin{equation} \int _{a}^{b}uL\left [ v\right ] -vL\left [ u\right ] dx=0 \tag{1} \end{equation}
Where \sigma \left ( x\right ) is the weight function of the corresponding Sturm-Liouville ODE that u,v are its solution eigenfunctions. Substituting (2,3) into (1) gives\begin{align*} \int _{a}^{b}u\left ( -\lambda _{v}\sigma \left ( x\right ) v\right ) -v\left ( -\lambda _{u}\sigma \left ( x\right ) u\right ) dx & =0\\ \int _{a}^{b}-\lambda _{v}\sigma \left ( x\right ) uv+\lambda _{u}\sigma \left ( x\right ) uvdx & =0\\ \left ( \lambda _{u}-\lambda _{v}\right ) \int _{a}^{b}\sigma \left ( x\right ) uvdx & =0 \end{align*}
Since u,v are different eigenfunctions, then the \lambda _{u}-\lambda _{v}\neq 0 as these are different eigenvalues. (There is one eigenfunction corresponding to each eigenvalue). Therefore the above says that \int _{a}^{b}\sigma \left ( x\right ) u\left ( x\right ) v\left ( x\right ) dx=0
L=\frac{d^{4}}{dx^{4}}
\begin{align*} uL\left [ v\right ] -vL\left [ u\right ] & =u\frac{d^{4}v}{dx^{4}}-v\frac{d^{4}u}{dx^{4}}\\ & =uv^{\left ( 4\right ) }-vu^{\left ( 4\right ) } \end{align*}
We want to obtain expression of form \frac{d}{dx}\left ({}\right ) such that it comes out to be uv^{\left ( 4\right ) }-vu^{\left ( 4\right ) }. If we can do this, then it is exact differential. Now, since \begin{equation} \frac{d}{dx}\left ( uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }\right ) =u^{\prime }v^{\prime \prime \prime }+uv^{\left ( 4\right ) }-u^{\prime \prime }v^{\prime \prime }-u^{\prime }v^{\prime \prime \prime } \tag{1} \end{equation}
Hence we found that \begin{align*} \frac{d}{dx}\left ( uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }-vu^{\prime \prime \prime }+v^{\prime }u^{\prime \prime }\right ) & =uv^{\left ( 4\right ) }-vu^{\left ( 4\right ) }\\ & =uL\left [ v\right ] -vL\left [ u\right ] \end{align*}
Therefore uL\left [ v\right ] -vL\left [ u\right ] is exact differential.
\begin{align*} I & =\int _{a}^{b}uL\left [ v\right ] -vL\left [ u\right ] dx\\ & =\int _{a}^{b}\frac{d}{dx}\left ( uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }-vu^{\prime \prime \prime }+v^{\prime }u^{\prime \prime }\right ) dx\\ & =\left . uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }-vu^{\prime \prime \prime }+v^{\prime }u^{\prime \prime }\right \vert _{a}^{b}\\ & =u\left ( b\right ) v^{\prime \prime \prime }\left ( b\right ) -u^{\prime }\left ( b\right ) v^{\prime \prime }\left ( b\right ) -v\left ( b\right ) u^{\prime \prime \prime }\left ( b\right ) +v^{\prime }\left ( b\right ) u^{\prime \prime }\left ( b\right ) \\ & -\left ( u\left ( a\right ) v^{\prime \prime \prime }\left ( a\right ) -u^{\prime }\left ( a\right ) v^{\prime \prime }\left ( a\right ) -v\left ( a\right ) u^{\prime \prime \prime }\left ( a\right ) +v^{\prime }\left ( a\right ) u^{\prime \prime }\left ( a\right ) \right ) \end{align*}
Or I=u\left ( b\right ) v^{\prime \prime \prime }\left ( b\right ) -u^{\prime }\left ( b\right ) v^{\prime \prime }\left ( b\right ) -v\left ( b\right ) u^{\prime \prime \prime }\left ( b\right ) +v^{\prime }\left ( b\right ) u^{\prime \prime }\left ( b\right ) -u\left ( a\right ) v^{\prime \prime \prime }\left ( a\right ) +u^{\prime }\left ( a\right ) v^{\prime \prime }\left ( a\right ) +v\left ( a\right ) u^{\prime \prime \prime }\left ( a\right ) -v^{\prime }\left ( a\right ) u^{\prime \prime }\left ( a\right )
From part(b),
\begin{equation} I=\int _{0}^{1}uL\left [ v\right ] -vL\left [ u\right ] dx=\left . uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }-vu^{\prime \prime \prime }+v^{\prime }u^{\prime \prime }\right \vert _{0}^{1} \tag{1} \end{equation}
Since we are given that
\begin{align*} \phi \left ( 0\right ) & =0\\ \phi ^{\prime }\left ( 0\right ) & =0\\ \phi \left ( 1\right ) & =0\\ \phi ^{\prime \prime }\left ( 1\right ) & =0 \end{align*}
The above will give \begin{align*} u\left ( 0\right ) & =v\left ( 0\right ) =0\\ u^{\prime }\left ( 0\right ) & =v^{\prime }\left ( 0\right ) =0\\ u\left ( 1\right ) & =v\left ( 1\right ) =0\\ u^{\prime \prime }\left ( 1\right ) & =v^{\prime \prime }\left ( 1\right ) =0 \end{align*}
Substituting these into (1) gives
\begin{align*} \int _{0}^{1}uL\left [ v\right ] -vL\left [ u\right ] dx & =u\left ( 1\right ) v^{\prime \prime \prime }\left ( 1\right ) -u^{\prime }\left ( 1\right ) v^{\prime \prime }\left ( 1\right ) -v\left ( 1\right ) u^{\prime \prime \prime }\left ( 1\right ) +v^{\prime }\left ( 1\right ) u^{\prime \prime }\left ( 1\right ) \\ & -u\left ( 0\right ) v^{\prime \prime \prime }\left ( 0\right ) +u^{\prime }\left ( 0\right ) v^{\prime \prime }\left ( 0\right ) +v\left ( 0\right ) u^{\prime \prime \prime }\left ( 0\right ) -v^{\prime }\left ( 0\right ) u^{\prime \prime }\left ( 0\right ) \end{align*}
Therefore
\begin{align*} \int _{0}^{1}uL\left [ v\right ] -vL\left [ u\right ] dx & =\left ( 0\times v^{\prime \prime \prime }\left ( 1\right ) \right ) -0-\left ( 0\times u^{\prime \prime \prime }\left ( 1\right ) \right ) +0-\left ( 0\times v^{\prime \prime \prime }\left ( 0\right ) \right ) +0+\left ( 0\times u^{\prime \prime \prime }\left ( 0\right ) \right ) -0\\ & =0 \end{align*}
Any boundary conditions which makes \left . uv^{\prime \prime \prime }-u^{\prime }v^{\prime \prime }-vu^{\prime \prime \prime }+v^{\prime }u^{\prime \prime }\right \vert _{0}^{1}=0 will do. For example, \begin{align*} \phi \left ( 0\right ) & =0\\ \phi ^{\prime }\left ( 0\right ) & =0\\ \phi \left ( 1\right ) & =0\\ \phi ^{\prime }\left ( 1\right ) & =0 \end{align*}
The above will give \begin{align*} u\left ( 0\right ) & =v\left ( 0\right ) =0\\ u^{\prime }\left ( 0\right ) & =v^{\prime }\left ( 0\right ) =0\\ u\left ( 1\right ) & =v\left ( 1\right ) =0\\ u^{\prime }\left ( 1\right ) & =v^{\prime }\left ( 1\right ) =0 \end{align*}
Substituting these into (1) gives
\begin{align*} \int _{0}^{1}uL\left [ v\right ] -vL\left [ u\right ] dx & =u\left ( 1\right ) v^{\prime \prime \prime }\left ( 1\right ) -u^{\prime }\left ( 1\right ) v^{\prime \prime }\left ( 1\right ) -v\left ( 1\right ) u^{\prime \prime \prime }\left ( 1\right ) +v^{\prime }\left ( 1\right ) u^{\prime \prime }\left ( 1\right ) \\ & -u\left ( 0\right ) v^{\prime \prime \prime }\left ( 0\right ) +u^{\prime }\left ( 0\right ) v^{\prime \prime }\left ( 0\right ) +v\left ( 0\right ) u^{\prime \prime \prime }\left ( 0\right ) -v^{\prime }\left ( 0\right ) u^{\prime \prime }\left ( 0\right ) \\ & =\left ( 0\times v^{\prime \prime \prime }\left ( 1\right ) \right ) -\left ( 0\times v^{\prime \prime }\left ( 1\right ) \right ) -\left ( 0\times u^{\prime \prime \prime }\left ( 1\right ) \right ) +\left ( 0\times u^{\prime \prime }\left ( 1\right ) \right ) \\ & -\left ( 0\times v^{\prime \prime \prime }\left ( 0\right ) \right ) +\left ( 0\times v^{\prime \prime }\left ( 0\right ) \right ) +\left ( 0\times u^{\prime \prime \prime }\left ( 0\right ) \right ) -\left ( 0\times u^{\prime \prime }\left ( 0\right ) \right ) \\ & =0 \end{align*}
Given \frac{d^{4}}{dx^{4}}\phi +\lambda e^{x}\phi =0
Where \lambda _{u},\lambda _{v} are the eigenvalues associated with eigenfunctions u,v and they are not the same. Hence now we can write \begin{align*} 0 & =\int _{0}^{1}uL\left [ v\right ] -vL\left [ u\right ] dx\\ & =\int _{0}^{1}u\left ( -\lambda _{v}e^{x}v\right ) -v\left ( -\lambda _{u}e^{x}u\right ) dx\\ & =\int _{0}^{1}-\lambda _{v}e^{x}uv+\lambda _{u}e^{x}uvdx\\ & =\int _{0}^{1}\left ( \lambda _{u}-\lambda _{v}\right ) \left ( e^{x}uv\right ) dx\\ & =\left ( \lambda _{u}-\lambda _{v}\right ) \int _{0}^{1}\left ( e^{x}uv\right ) dx \end{align*}
Since \lambda _{u}-\lambda _{v}\neq 0 then \int _{0}^{1}\left ( e^{x}uv\right ) dx=0
Equation 5.5.22 is\begin{equation} p\left ( \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime }\right ) =\text{constant} \tag{5.5.22} \end{equation}
From (1), \begin{equation} \phi _{1}^{\prime }\left ( a\right ) =-\frac{\beta _{1}}{\beta _{2}}\phi _{1}\left ( a\right ) \tag{3} \end{equation}
In the above, we evaluated \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime } at one end point, and found it to be zero. But \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime } is the Wronskian W\left ( x\right ) . It is known that if W\left ( x\right ) =0 at just one point, then it is zero at all points in the range. Hence we conclude that \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime }=0
Equation 5.5.22 is\begin{equation} p\left ( \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime }\right ) =\text{constant} \tag{5.5.22} \end{equation}
Then let \phi \left ( a\right ) =c_{1} and \phi ^{\prime }\left ( a\right ) =c_{2}, where c_{1},c_{2} are some constants. Then we write\begin{align*} \phi _{1}\left ( a\right ) & =c_{1}\\ \phi _{1}^{\prime }\left ( a\right ) & =c_{2}\\ \phi _{2}\left ( a\right ) & =c_{1}\\ \phi _{2}^{\prime }\left ( a\right ) & =c_{2} \end{align*}
Hence it follows immediately that\begin{align*} \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime } & =c_{1}c_{2}-c_{2}c_{1}\\ & =0 \end{align*}
Hence we showed that \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime } is bounded. Then p\left ( \phi _{1}\phi _{2}^{\prime }-\phi _{2}\phi _{1}^{\prime }\right ) =0. QED.