A ball will roll with slip when the linear velocity v of its center of mass is different from r\omega where r is the radius and \omega is the spin angular velocity. Therefore, to find when the ball will roll without slipping, we need to find when v=r\omega . Let the initial state be such that v_{1}=v_{0} (given) and \omega _{1}=\omega _{0} (given). So we need to find the time t to get to new state, such that v_{2}=r\omega _{2}
Using linear momentum mv_{1}+\int _{0}^{t_{final}}F_{friction}dt=mv_{2}
Where in (2), r_{G} is radius of gyration, and we replaced \omega _{2} by \frac{v_{2}}{r}. Notice the sign in RHS of (2) is negative, since we assume v_{2} is moving to the right, so in state 2, the ball will be spinning clock wise, which is negative,. Now we have two equations (1,2) with two unknowns t, which is the time to get to the state such that center of mass moves with same speed as r\omega (i.e. no slip) and the second unknown is v_{2} which is the speed at which the ball will be rolling at that time. We now solve (1,2) for t,v_{2}
(1) becomes\begin{align} \left ( \frac{15}{32.2}\right ) \left ( 17\left ( \frac{5280}{3600}\right ) \right ) -\left ( 0.11\right ) \left ( \frac{15}{32.2}\right ) \left ( 32.2\right ) t & =\left ( \frac{15}{32.2}\right ) v_{2}\tag{1A}\\ \left ( \frac{15}{32.2}\right ) \left ( \frac{2.4}{12}\right ) ^{2}\left ( 9\right ) -\left ( 0.11\right ) \left ( \frac{15}{32.2}\right ) \left ( 32.2\right ) \left ( \frac{4.25}{12}\right ) t & =-\left ( \frac{15}{32.2}\right ) \left ( \frac{2.4}{12}\right ) ^{2}\left ( \frac{v_{2}}{\left ( \frac{4.25}{12}\right ) }\right ) \tag{2A} \end{align}
Or\begin{align} 11.615-1.65t & =0.466v_{2}\tag{1A}\\ 0.168-0.584\,t & =-0.0526v_{2} \tag{2A} \end{align}
Solution is: \begin{align*} t & =1.919\,6\text{ sec}\\ v_{2} & =18.134\,\text{ ft/sec} \end{align*}
Now that we know the time and the final velocity, we can find the acceleration of the ball\begin{align*} v_{2} & =v_{1}+at\\ a & =\frac{v_{2}-v_{1}}{t}\\ & =\frac{18.134\,-17\left ( \frac{5280}{3600}\right ) }{1.9196}\\ & =-3.542\,\text{ ft/s}^{2} \end{align*}
Hence the distance travelled is\begin{align*} s & =v_{0}t+\frac{1}{2}at^{2}\\ & =17\left ( \frac{5280}{3600}\right ) \left ( 1.9196\right ) +\frac{1}{2}\left ( -3.542\,\right ) \left ( 1.9196\right ) ^{2}\\ & =41.336\,1\text{ ft} \end{align*}
Using the following FBD
Notice that the Friction force F is pointing downwards since the spool is spinning counter clockwise. Resolving forces along x gives \begin{equation} F-T+mg\sin \theta =m\ddot{x} \tag{1} \end{equation}
Therefore (2) and (3) become\begin{align} \mu _{k}mg\cos \theta R-T\rho & =I_{cg}\alpha \tag{2A}\\ \mu _{k}mg\cos \theta -T+mg\sin \theta & =-m\rho \alpha \tag{3A} \end{align}
In (2A) and (3A) there are 2 unknowns, \alpha and T. Plugging numerical values gives\begin{align*} \left ( 0.31\right ) \left ( 213\right ) \left ( 9.81\right ) \cos \left ( 27\left ( \frac{\pi }{180}\right ) \right ) \left ( 2.24\right ) -T\left ( 1.74\right ) & =\left ( 213\right ) \left ( 2\right ) ^{2}\alpha \\ \left ( 0.31\right ) \left ( 213\right ) \left ( 9.81\right ) \cos \left ( 27\left ( \frac{\pi }{180}\right ) \right ) -T+\left ( 213\right ) \left ( 9.81\right ) \sin \left ( 27\left ( \frac{\pi }{180}\right ) \right ) & =-\left ( 213\right ) \left ( 1.74\right ) \alpha \end{align*}
Or\begin{align} 1292.823-1.74T & =852.0\alpha \tag{2A}\\ 1525.78-1.0T & =-370.62\alpha \tag{3A} \end{align}
Solution is: \begin{align*} T & =1188.547\text{ N}\\ \alpha & =-0.9099\text{ rad/s}^{2} \end{align*}
Now since \ddot{x}=-\rho \alpha then\begin{align*} \ddot{x} & =-\left ( 1.74\right ) \left ( -0.9099\right ) \\ & =1.583\,\text{\ m/s}^{2} \end{align*}
The forces in play are
Resolving forces along \hat{u}_{\phi }\begin{equation} -F-mg\sin \phi =m\left ( R-\rho \right ) \ddot{\phi } \tag{1} \end{equation}
Or\begin{align} -F-1.864\, & =0.27\ddot{\phi }\tag{1A}\\ -1.2F & =0.0519\ddot{\theta }\tag{2A}\\ 0 & =1.2\ddot{\theta }+3\ddot{\phi } \tag{3A} \end{align}
Solving gives \begin{align*} F & =-0.5326\text{ N}\\ \ddot{\theta } & =12.32\text{ rad/s}^{2}\\ \ddot{\phi } & =-4.\,928\text{ rad/s}^{2} \end{align*}
To find N, we resolve forces along \hat{u}_{r} -N+mg\cos \phi =-m\left ( R-\rho \right ) \dot{\theta }^{2}
Now to find \vec{a}_{G}. Since \vec{a}_{G}=\left ( R-\rho \right ) \ddot{\phi }\hat{u}_{\phi }-\frac{v^{2}}{R-\rho }\hat{u}_{r}
Let r be radius of disk. Then, about joint O at top, \begin{align*} I_{disk} & =m_{disk}\frac{r^{2}}{2}+m_{disk}\left ( L+r\right ) ^{2}\\ & =\left ( 0.37\right ) \frac{\left ( 0.08\right ) ^{2}}{2}+0.37\left ( 0.75+0.08\right ) ^{2}\\ & =0.256\,077 \end{align*}
And\begin{align*} I_{bar} & =m_{bar}\frac{L^{2}}{3}\\ & =\left ( 0.7\right ) \frac{\left ( 0.75\right ) ^{2}}{3}\\ & =0.131 \end{align*}
Hence overall \begin{align*} I_{o} & =I_{disk}+I_{bar}\\ & =0.256\,+0.131\\ & =0.387\,\, \end{align*}
Therefore\begin{align*} KE & =\frac{1}{2}I_{o}\omega ^{2}\\ & =\frac{1}{2}\left ( 0.387\right ) \left ( 0.23\right ) ^{2}\\ & =0.01024\,\text{J} \end{align*}
Since wheel rolls without spin, then friction on the ground against the wheel does no work. Therefore we can use work-energy to find v_{final} since we do not need to find friction force and this gives us one equation with one unknown to solve for. \begin{align} T_{1}+U_{1} & =T_{2}+U_{2}\nonumber \\ 0+mgh & =\frac{1}{2}mv_{cg}^{2}+\frac{1}{2}I_{cg}\omega ^{2}-mgh \tag{1} \end{align}
Where in the above, the datum is taken as horizontal line passing through the middle of the wheel. But I_{cg}=mr_{G}^{2}
Therefore v_{o}=8.805\text{ ft/s}
The velocities at each point are given by
\begin{align*} V_{B} & =R\omega _{AB}\\ & =4\left ( 3\right ) \\ & =12\text{ ft/s} \end{align*}
Looking at point C, we obtain two equations\begin{align*} L\omega _{BC} & =-H\omega _{CD}\cos \phi \\ -V_{B} & =-H\omega _{CD}\sin \phi \end{align*}
Or\begin{align*} \left ( 5.5\right ) \omega _{BC} & =-\left ( 6.5\right ) \omega _{CD}\cos \left ( 49\left ( \frac{\pi }{180}\right ) \right ) \\ -12 & =-\left ( 6.5\right ) \omega _{CD}\sin \left ( 49\left ( \frac{\pi }{180}\right ) \right ) \end{align*}
Solving gives\begin{align*} \omega _{BC} & =-1.897\,\text{\ rad/sec}\\ \omega _{CD} & =2.446\,\text{ rad/sec} \end{align*}
We now need to find velocity of center of mass of bar BC. We see from diagram that it is given by\begin{align*} \vec{v}_{CG} & =-V_{B}\hat{\imath }-\frac{L}{2}\omega _{BC}\hat{\jmath }\\ & =-12\hat{\imath }-\frac{5.5}{2}\left ( -1.\,897\right ) \hat{\jmath }\\ & =-12\hat{\imath }+5.\,217\hat{\jmath } \end{align*}
Hence \begin{align*} \left \vert \vec{v}_{CG}\right \vert & =\sqrt{12^{2}+5.\,217^{2}}\\ & =13.085\ \text{ft/sec} \end{align*}
Now we have all the velocities needed. The K.E. of bar AB is\begin{align*} T_{AB} & =\frac{1}{2}I_{AB}\frac{1}{2}\omega _{AB}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{3}m_{AB}R^{2}\right ) \omega _{AB}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{3}\left ( \frac{3}{32.2}\right ) \left ( 4\right ) ^{2}\right ) \left ( 3\right ) ^{2}\\ & =2.236 \end{align*}
For bar BC it has both translation and rotation KE\begin{align*} T_{BC} & =\frac{1}{2}I_{BC}\frac{1}{2}\omega _{BC}^{2}+\frac{1}{2}m_{BC}v_{CG}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{12}m_{BC}L^{2}\right ) \omega _{BC}^{2}+\frac{1}{2}m_{BC}v_{CG}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{12}\left ( \frac{6.5}{32.2}\right ) \left ( 5.5\right ) ^{2}\right ) \left ( -1.\,\allowbreak 897\right ) ^{2}+\frac{1}{2}\left ( \frac{6.5}{32.2}\right ) \left ( \allowbreak 13.\,\allowbreak 085\right ) ^{2}\\ & =18.197 \end{align*}
And for bar CD it has only rotation KE\begin{align*} T_{CD} & =\frac{1}{2}I_{CD}\frac{1}{2}\omega _{CD}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{3}m_{CD}H^{2}\right ) \omega _{CD}^{2}\\ & =\frac{1}{2}\left ( \frac{1}{3}\left ( \frac{11}{32.2}\right ) \left ( 6.5\right ) ^{2}\right ) \left ( 2.446\right ) ^{2}\\ & =14.392 \end{align*}
Therefore the total KE is\begin{align*} KE & =T_{AB}+T_{BC}+T_{CD}\\ & =2.236+18.197+14.392\\ & =34.825\text{ J} \end{align*}