Processing math: 100%

7.5 Quizz 5

  7.5.1 Problems
  7.5.2 Problem 1 solution
  7.5.3 Problem 2 solution
PDF (letter size)
PDF (letter size)

7.5.1 Problems

pict

7.5.2 Problem 1 solution

Angular speed of earth around sun is \dot{\theta }=\frac{2\pi }{\left ( 364\right ) \left ( 24\right ) \left ( 60\right ) \left ( 60\right ) }

Force on earth is therefore mr\dot{\theta }^{2}. Equating this to F=G\frac{m_{e}m_{s}}{r^{2}} and solving for r gives r\dot{\theta }^{2}=G\frac{m_{s}}{r^{2}}
One equation with one unknown r. Solving gives (taking the positive root) r=149.26\times 10^{9}\text{ meter}

7.5.3 Problem 2 solution

y\left ( x\right ) =8\sin \left ( \pi x\right )

We want to solve for v in \frac{v^{2}}{\rho }=g
But \rho =\frac{\left ( 1+y^{\prime }\left ( x\right ) ^{2}\right ) ^{\frac{3}{2}}}{\left \vert y^{\prime \prime }\left ( x\right ) \right \vert }. To find what x to use, since at top of hill, then we want \sin \left ( \pi x\right ) =1 or x=\frac{1}{2}. Plugging this into \rho gives \rho =0.0126651
Hence \frac{v^{2}}{0.0126651}=9.81
Or v=0.3525\text{ m/s}