To make it easier to obtain the equation of motions, the top mass m is modeled as attached to spring of stiffness k which is in turn attached to an infinitely stiff vertical massless beam. This way the vibration of the mass m~at the top can be more easily modeled.
Based on the above diagram, we now obtain the free body diagram as follows. In this, we assume that x_{2}>x_{1} and both as positive. Hence spring k attached to m~ is in tension.
The top mass m vibrates in horizontal direction only. Hence this assumes the spring will remain horizontal and we must assume that x_{2}-x_{1} remain small for this model to be realistic.
From this free body diagram we see now that the reaction force F_{x} is equal to k\left ( x_{2}-x_{1}\right ). (By resolving forces in the x direction for the massless beam).
Therefore F_x = k\left ( x_{2}-x_{1}\right )
The equation of motion for the cart is\begin{align} 2m\ddot{x}_{1} & =-4kx_{1}+F_{x}\nonumber \\ 2m\ddot{x}_{1} & =-4kx_{1}+k\left ( x_{2}-x_{1}\right ) \nonumber \\ 2m\ddot{x}_{1}+5kx_{1}-kx_{2} & =0\tag{2} \end{align}
Writing (1) and (2) in matrix form \fbox{$\begin{bmatrix} 2m & 0\\ 0 & m \end{bmatrix}\begin{Bmatrix} \ddot{x}_{1}\\ \ddot{x}_{2}\end{Bmatrix} +\begin{bmatrix} 5k & -k\\ -k & k \end{bmatrix}\begin{Bmatrix} x_{1}\\ x_{2}\end{Bmatrix} =\begin{Bmatrix} 0\\ 0 \end{Bmatrix} $}
Let \begin{align*} A & =M^{-1}K\\ & =\begin{bmatrix} 4 & 0\\ 0 & 2 \end{bmatrix} ^{-1}\begin{bmatrix} 1000 & -200\\ -200 & 200 \end{bmatrix} \end{align*}
But \begin{align*} \begin{bmatrix} 4 & 0\\ 0 & 2 \end{bmatrix} ^{-1} & =\frac{1}{\det \left ( M\right ) }\begin{bmatrix} 2 & 0\\ 0 & 4 \end{bmatrix} \\ & =\frac{1}{8}\begin{bmatrix} 2 & 0\\ 0 & 4 \end{bmatrix} \\ & =\begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{2}\end{bmatrix} \end{align*}
Hence\begin{align*} A & =\begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{2}\end{bmatrix}\begin{bmatrix} 1000 & -200\\ -200 & 200 \end{bmatrix} \\ & =\begin{bmatrix} 250 & -50\\ -100 & 100 \end{bmatrix} \end{align*}
Now we will find the eigenvalues of A (these will be the \omega _{n}^{2} values). To find the eigenvalues of A, we solve \begin{align*} \det \left ( \left [ A\right ] -\lambda \left [ I\right ] \right ) & =0\\ \det \left ( \begin{bmatrix} 250 & -50\\ -100 & 100 \end{bmatrix} -\begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right ) & =\\\begin{vmatrix} 250-\lambda & -50\\ -100 & 100-\lambda \end{vmatrix} & =\\ \left ( 250-\lambda \right ) \left ( 100-\lambda \right ) -5000 & =0\\ \lambda ^{2}-350\lambda +20\,000 & =0 \end{align*}
Hence\begin{align*} \lambda & =\frac{-b}{2a}\pm \frac{\sqrt{b^{2}-4ac}}{2a}\\ & =\frac{350}{2}\pm \frac{\sqrt{350^{2}-4\left ( 20\,000\right ) }}{2}\\ & =175\pm 103.08\\ & =\left \{ 71.92,278.08\right \} \end{align*}
Therefore, the eigenvalues are \begin{equation} \lambda =\omega _{n}^{2}=\left \{ 71.92,278.08\right \} \tag{3} \end{equation}
Hence\begin{align*} \omega _{n\left ( 1\right ) } & =8.4806\text{ rad/sec}\\ \omega _{n\left ( 2\right ) } & =16.676\text{ rad/sec} \end{align*}
The next step is to find the eigenvectors. These are also called the shape vectors, or the u vectors. Each eigenvalue will generate one eigenvector. We need to solve \left [ A\right ] \left \{ u\right \} =\lambda \left \{ u\right \}
For \lambda =71.92, we obtain the equation\begin{bmatrix} 250 & -50\\ -100 & 100 \end{bmatrix}\begin{Bmatrix} u_{11}\\ u_{21}\end{Bmatrix} =71.92\begin{Bmatrix} u_{11}\\ u_{21}\end{Bmatrix}
Therefore, the first eigenvector is \vec{u}_{1}=\begin{Bmatrix} 1\\ 3.5616 \end{Bmatrix}
Therefore, the second eigenvector is \vec{u}_{2}=\begin{Bmatrix} 1\\ -0.561\,6 \end{Bmatrix}
And the system of equations written in principle coordinates q is\begin{align*} \left \{ \ddot{q}\right \} +\left [ \Omega \right ] \left \{ q\right \} & =\left \{ 0\right \} \\\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\begin{Bmatrix} \ddot{q}_{1}\left ( t\right ) \\ \ddot{q}_{2}\left ( t\right ) \end{Bmatrix} +\begin{bmatrix} 71.92 & 0\\ 0 & 278.08 \end{bmatrix}\begin{Bmatrix} \ddot{q}_{1}\left ( t\right ) \\ \ddot{q}_{2}\left ( t\right ) \end{Bmatrix} & =\begin{Bmatrix} 0\\ 0 \end{Bmatrix} \end{align*}
which is now decoupled. The solution in normal coordinates is\begin{align*} \begin{Bmatrix} x_{1}\left ( t\right ) \\ x_{2}\left ( t\right ) \end{Bmatrix} & =A_{1}\begin{Bmatrix} u_{11}\\ u_{21}\end{Bmatrix} \cos \left ( \omega _{n\left ( 1\right ) }t-\phi _{1}\right ) +A_{2}\begin{Bmatrix} u_{12}\\ u_{22}\end{Bmatrix} \cos \left ( \omega _{n\left ( 2\right ) }t-\phi _{2}\right ) \\ & =A_{1}\begin{Bmatrix} 1\\ 3.5616 \end{Bmatrix} \cos \left ( 8.481t-\phi _{1}\right ) +A_{2}\begin{Bmatrix} 1\\ -0.561\,6 \end{Bmatrix} \cos \left ( 16.676t-\phi _{2}\right ) \end{align*}
This is derivation of the same equations of motions using energy method. (In this example, this method is much simpler to use to find equation of motions). The kinetic energy of the system is T=\frac{1}{2}m\dot{x}_{2}^{2}+\frac{1}{2}\left ( 2m\right ) \dot{x}_{1}^{2}
EQM for x_{1}\begin{align} \frac{d}{dt}\left ( \frac{\partial \Gamma }{\dot{x}_{1}}\right ) -\frac{\partial \Gamma }{x_{1}} & =0\nonumber \\ \frac{d}{dt}\left ( 2m\dot{x}_{1}\right ) -\left ( -4kx_{1}+k\left ( x_{2}-x_{1}\right ) \right ) & =0\nonumber \\ 2m\ddot{x}_{1}-\left ( -4kx_{1}+kx_{2}-kx_{1}\right ) & =0\nonumber \\ 2m\ddot{x}_{1}-\left ( -5kx_{1}+kx_{2}\right ) & =0\nonumber \\ 2m\ddot{x}_{1}+5kx_{1}-kx_{2} & =0\tag{1} \end{align}
EQM for x_{2}\begin{align} \frac{d}{dt}\left ( \frac{\partial \Gamma }{\dot{x}_{2}}\right ) -\frac{\partial \Gamma }{x_{2}} & =0\nonumber \\ \frac{d}{dt}\left ( m\dot{x}_{2}\right ) -\left ( -k\left ( x_{2}-x_{1}\right ) \right ) & =0\nonumber \\ m\ddot{x}_{2}-\left ( -kx_{2}+kx_{1}\right ) & =0\nonumber \\ m\ddot{x}_{2}+kx_{2}-kx_{1} & =0\tag{2} \end{align}
In Matrix form (1,2) becomes\begin{bmatrix} 2m & 0\\ 0 & m \end{bmatrix}\begin{Bmatrix} \ddot{x}_{1}\\ \ddot{x}_{2}\end{Bmatrix} +\begin{bmatrix} 5k & -k\\ -k & k \end{bmatrix}\begin{Bmatrix} x_{1}\\ x_{2}\end{Bmatrix} =\begin{Bmatrix} 0\\ 0 \end{Bmatrix}
The Matlab code is the following
The output is
Definitions For stiffness matrix \left [ K\right ] , element k_{ij} means: Apply unit displacement at location j and measure the force at location i. While for flexibility matrix \left [ a\right ] , its element a_{ij} means: Apply unit force at location j and measure the displacement at location i.
To solve this problem, this part of handout is used
Since \left [ a\right ] is symmetric, only lower triangle part needs to be found (or upper triangle).
\begin{bmatrix} a_{11} & & \\ a_{21} & a_{22} & \\ a_{31} & a_{32} & a_{33}\end{bmatrix}
Therefore, using this result, the lower triangle is\begin{bmatrix} \frac{9}{64} & & \\ \frac{1}{6} & \frac{1}{3} & \\ \frac{13}{192} & \frac{1}{6} & \frac{9}{64}\end{bmatrix} \frac{L^{3}}{EI}