By inspection \left [ k\right ] =\begin{bmatrix} k_{1}+k_{2} & -k_{2}\\ -k_{2} & k_{2}+k_{3}\end{bmatrix} =\begin{bmatrix} 27 & -18\\ -18 & 36 \end{bmatrix}
To find the eigenvalues of \left [ A\right ] we solve \left \vert A-\lambda I\right \vert =0 or\begin{align*} \begin{vmatrix} 27-\lambda & -18\\ -9 & 18-\lambda \end{vmatrix} & =0\\ \lambda ^{2}-45\lambda +324 & =0 \end{align*}
Hence\begin{align*} \lambda _{1} & =9\\ \lambda _{2} & =36 \end{align*}
Which implies\begin{align*} \omega _{n\left ( 1\right ) } & =3\text{ rad/s}\\ \omega _{n\left ( 2\right ) } & =9\text{ rad/s} \end{align*}
Now we find the eigenvectors u_{i} or the shape vectors. For \lambda _{1}=9\begin{align*} \left [ A\right ] \begin{Bmatrix} u_{1}\\ u_{2}\end{Bmatrix} & =\lambda _{1}\begin{Bmatrix} u_{1}\\ u_{2}\end{Bmatrix} \\\begin{bmatrix} 27 & -18\\ -9 & 18 \end{bmatrix}\begin{Bmatrix} u_{1}\\ u_{2}\end{Bmatrix} & =9\begin{Bmatrix} u_{1}\\ u_{2}\end{Bmatrix} \\\begin{bmatrix} 27u_{1}-18u_{2}\\ -9u_{1}+18u_{2}\end{bmatrix} & =\begin{Bmatrix} 9u_{1}\\ 9u_{2}\end{Bmatrix} \end{align*}
Using first equation only gives 27u_{1}-18u_{2}=9u_{1}
Therefore the first eigenvector is \vec{u}_{1}=\begin{Bmatrix} 1\\ 1 \end{Bmatrix}
Using first equation only gives 27u_{1}-18u_{2}=36u_{1}
Therefore the second eigenvector is \vec{u}_{2}=\begin{Bmatrix} 1\\ -\frac{1}{2}\end{Bmatrix}
Or\begin{align} \ddot{q}_{1}\left ( t\right ) +9q_{1}\left ( t\right ) & =\sin 4t\tag{5}\\ \ddot{q}_{2}\left ( t\right ) +36q_{2}\left ( t\right ) & =2\sin 4t\tag{6} \end{align}
Note There is a short cut to obtain the above (5,6) equations directly as follows. Starting with (2), we just write\begin{align*} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\begin{Bmatrix} \ddot{q}_{1}\left ( t\right ) \\ \ddot{q}_{2}\left ( t\right ) \end{Bmatrix} +\begin{bmatrix} \omega _{n\left ( 1\right ) }^{2} & 0\\ 0 & \omega _{n\left ( 2\right ) }^{2}\end{bmatrix}\begin{Bmatrix} q_{1}\left ( t\right ) \\ q_{2}\left ( t\right ) \end{Bmatrix} & =\left [ u\right ] ^{-1}\left [ m\right ] ^{-1}\begin{Bmatrix} 3\sin 4t\\ 0 \end{Bmatrix} \\\begin{Bmatrix} \ddot{q}_{1}\left ( t\right ) +9q_{1}\left ( t\right ) \\ \ddot{q}_{2}\left ( t\right ) ++36q_{2}\left ( t\right ) \end{Bmatrix} & =\begin{bmatrix} 1 & 1\\ 1 & -\frac{1}{2}\end{bmatrix} ^{-1}\begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} ^{-1}\begin{Bmatrix} 3\sin 4t\\ 0 \end{Bmatrix} \\ & =\begin{Bmatrix} \sin 4t\\ 2\sin 4t \end{Bmatrix} \end{align*}
Which is the same as (5,6). This short cut just needs finding \left [ u\right ] ^{-1}\left [ m\right ] ^{-1}. Use this short cut for the exam.
Solving (5)
The homogeneous solution is q_{1,h}\left ( t\right ) =A_{1}\cos 3t+B_{1}\sin 3t
Hence q_{1,p}=-\frac{1}{7}\sin 4t and the complete solution is q_{1}\left ( t\right ) =A_{1}\cos 3t+B_{1}\sin 3t-\frac{1}{7}\sin 4t
The homogeneous solution is q_{2,h}\left ( t\right ) =A_{2}\cos 6t+B_{2}\sin 6t
Hence q_{2,p}=\frac{1}{10}\sin 4t and the complete solution is q_{2}\left ( t\right ) =A_{2}\cos 6t+B_{2}\sin 6t+\frac{1}{10}\sin 4t
Since \left \{ x\right \} =\left [ u\right ] \left \{ q\right \} , then \left \{ q\right \} =\left [ u\right ] ^{-1}\left \{ x\right \} . Therefore\begin{align*} \left \{ q\left ( 0\right ) \right \} & =\left [ u\right ] ^{-1}\left \{ x\left ( 0\right ) \right \} \\\begin{Bmatrix} q_{1}\left ( 0\right ) \\ q_{2}\left ( 0\right ) \end{Bmatrix} & =\begin{bmatrix} 1 & 1\\ 1 & -\frac{1}{2}\end{bmatrix} ^{-1}\begin{Bmatrix} x_{1}\left ( 0\right ) \\ x_{2}\left ( 0\right ) \end{Bmatrix} \\ & =\begin{bmatrix} \frac{1}{3} & \frac{2}{3}\\ \frac{2}{3} & -\frac{2}{3}\end{bmatrix}\begin{Bmatrix} 3\\ 0 \end{Bmatrix} \\ & =\begin{Bmatrix} 1\\ 2 \end{Bmatrix} \end{align*}
And\begin{align*} \left \{ \dot{q}\left ( 0\right ) \right \} & =\left [ u\right ] ^{-1}\left \{ \dot{x}\left ( 0\right ) \right \} \\\begin{Bmatrix} \dot{q}_{1}\left ( 0\right ) \\ \dot{q}_{2}\left ( 0\right ) \end{Bmatrix} & =\begin{bmatrix} \frac{1}{3} & \frac{2}{3}\\ \frac{2}{3} & -\frac{2}{3}\end{bmatrix}\begin{Bmatrix} 0\\ 9 \end{Bmatrix} \\ & =\begin{Bmatrix} 6\\ -6 \end{Bmatrix} \end{align*}
Applying first initial conditions to (5A,6A) gives\begin{align*} 1 & =A_{1}\\ 2 & =A_{2} \end{align*}
Hence (5A,6A) becomes\begin{align} q_{1}\left ( t\right ) & =\cos 3t+B_{1}\sin 3t-\frac{1}{7}\sin 4t\tag{5B}\\ q_{2}\left ( t\right ) & =2\cos 6t+B_{2}\sin 6t+\frac{1}{10}\sin 4t \tag{6B} \end{align}
Taking derivatives\begin{align*} \dot{q}_{1}\left ( t\right ) & =-3\sin 3t+3B_{1}\cos 3t-\frac{4}{7}\cos 4t\\ \dot{q}_{2}\left ( t\right ) & =-12\sin 6t+6B_{2}\cos 6t+\frac{4}{10}\cos 4t \end{align*}
Applying the second initial conditions to the above gives\begin{align*} 6 & =3B_{1}-\frac{4}{7}\\ -6 & =6B_{2}+\frac{4}{10} \end{align*}
Solving gives B_{1}=\frac{46}{21},B_{2}=-\frac{16}{15}. Hence (5B,6B) become\begin{align} q_{1}\left ( t\right ) & =\cos 3t+\frac{46}{21}\sin 3t-\frac{1}{7}\sin 4t\tag{5C}\\ q_{2}\left ( t\right ) & =2\cos 6t-\frac{16}{15}\sin 6t+\frac{1}{10}\sin 4t \tag{6C} \end{align}
The above is the solution in principle coordinates. Now we transform it back to normal coordinates. Since \left \{ x\right \} =\left [ u\right ] \left \{ q\right \} , then \begin{align} \begin{Bmatrix} x_{1}\left ( t\right ) \\ x_{2}\left ( t\right ) \end{Bmatrix} & =\begin{bmatrix} u_{11} & u_{12}\\ u_{21} & u_{22}\end{bmatrix}\begin{Bmatrix} q_{1}\left ( t\right ) \\ q_{2}\left ( t\right ) \end{Bmatrix} \nonumber \\ & =\begin{bmatrix} 1 & 1\\ 1 & -\frac{1}{2}\end{bmatrix}\begin{Bmatrix} \cos \left ( 3t\right ) +\left ( \frac{46}{21}\right ) \sin \left ( 3t\right ) -\left ( \frac{1}{7}\right ) \sin \left ( 4t\right ) \\ 2\cos \left ( 6t\right ) -\left ( \frac{16}{15}\right ) \sin \left ( 6t\right ) +\frac{1}{10}\sin 4t \end{Bmatrix} \nonumber \\ & =\begin{Bmatrix} \cos 3t+2\cos 6t+\frac{46}{21}\sin 3t-\frac{3}{70}\sin 4t-\frac{16}{15}\sin 6t\\ \cos 3t-\cos 6t+\frac{46}{21}\sin 3t-\frac{27}{140}\sin 4t+\frac{8}{15}\sin 6t \end{Bmatrix} \nonumber \end{align}
The above is the final solution. Here is a plot of x_{1}\left ( t\right ) ,x_{2}\left ( t\right )