3.7 my cheat sheet

  3.7.1 Solution to undamped forced harmonic
  3.7.2 Solution to underdamped forced harmonic
  3.7.3 unit Impulse respones
  3.7.4 Duhamel Integral
PDF (letter size)
PDF (legal size)

3.7.1 Solution to undamped forced harmonic

   3.7.1.1 Input is \(F_{0}\cos \omega t\)
   3.7.1.2 Input is \(F_{0}\sin \omega t\)

3.7.1.1 Input is \(F_{0}\cos \omega t\)

\[ m\ddot{x}+kx=F_{0}\cos \omega t \] This model is single degree of freedom system, undamped, with forced harmonice input. Its solution is given by\[ x\left ( t\right ) =x_{h}\left ( t\right ) +x_{p}\left ( t\right ) \] Where \(x_{p}\left ( t\right ) \) is particular solution and \(x_{h}\left ( t\right ) \) is homogenous solution. We know that\[ x_{h}\left ( t\right ) =c_{1}\cos \omega _{n}t+c_{2}\sin \omega _{n}t \] And assuming \(x_{p}\left ( t\right ) =X\cos \omega t\) for the case \(\omega \neq \omega _{n}\) Pluggin this into the ODE, we find that \[ X=\frac{x_{st}}{1-r^{2}}\] Where\(\ r=\frac{\omega }{\omega _{n}}\) and \(x_{st}=\frac{F_{0}}{k_{eq}}\) the static deflection. Hence the solution becomes\begin{equation} x\left ( t\right ) =\overset{\text{homogeneous}}{\overbrace{c_{1}\cos \omega _{n}t+c_{2}\sin \omega _{n}t}}+\overset{\text{particular}}{\overbrace{\frac{x_{st}}{1-r^{2}}\cos \omega t}} \tag{1} \end{equation} Assuming initial conditions are \(x\left ( 0\right ) =x_{0},\dot{x}\left ( 0\right ) =\dot{x}_{0}\), then (1) at \(t=0\) becomes\begin{align*} x_{0} & =c_{1}+\frac{x_{st}}{1-r^{2}}\\ c_{1} & =x_{0}-\frac{x_{st}}{1-r^{2}} \end{align*}

Hence solution (1) now becomes\[ x\left ( t\right ) =\left ( x_{0}-\frac{x_{st}}{1-r^{2}}\right ) \cos \omega _{n}t+c_{2}\sin \omega _{n}t+\frac{x_{st}}{1-r^{2}}\cos \omega t \] Taking derivative\[ \dot{x}\left ( t\right ) =-\omega _{n}\left ( x_{0}-\frac{x_{st}}{1-r^{2}}\right ) \sin \omega _{n}t+c_{2}\omega _{n}\cos \omega _{n}t-\omega \frac{x_{st}}{1-r^{2}}\sin \omega t \] At \(t=0\) the above becomes\begin{align*} \dot{x}_{0} & =c_{2}\omega _{n}\\ c_{2} & =\frac{\dot{x}_{0}}{\omega _{n}} \end{align*}

Therefore the solution now becomes (again, this is for \(\omega \neq \omega _{n}\))\begin{equation} x\left ( t\right ) =\left ( x_{0}-\frac{x_{st}}{1-r^{2}}\right ) \cos \omega _{n}t+\frac{\dot{x}_{0}}{\omega _{n}}\sin \omega _{n}t+\frac{x_{st}}{1-r^{2}}\cos \omega t \tag{2} \end{equation}

3.7.1.2 Input is \(F_{0}\sin \omega t\)

\[ m\ddot{x}+kx=F_{0}\sin \omega t \] This model is single degree of freedom system, undamped, with forced harmonice input. Its solution is given by\[ x\left ( t\right ) =x_{h}\left ( t\right ) +x_{p}\left ( t\right ) \] Where \(x_{p}\left ( t\right ) \) is particular solution and \(x_{h}\left ( t\right ) \) is homogenous solution. We know that\[ x_{h}\left ( t\right ) =c_{1}\cos \omega _{n}t+c_{2}\sin \omega _{n}t \] And assuming \(x_{p}\left ( t\right ) =X\sin \omega t\) for the case \(\omega \neq \omega _{n}\) Pluggin this into the ODE, we find that \[ X=\frac{x_{st}}{1-r^{2}}\] Where\(\ r=\frac{\omega }{\omega _{n}}\) and \(x_{st}=\frac{F_{0}}{k_{eq}}\) the static deflection. Hence the solution becomes\begin{equation} x\left ( t\right ) =\overset{\text{homogeneous}}{\overbrace{c_{1}\cos \omega _{n}t+c_{2}\sin \omega _{n}t}}+\overset{\text{particular}}{\overbrace{\frac{x_{st}}{1-r^{2}}\sin \omega t}} \tag{1} \end{equation} Assuming initial conditions are \(x\left ( 0\right ) =x_{0},\dot{x}\left ( 0\right ) =\dot{x}_{0}\), then (1) at \(t=0\) becomes\[ x_{0}=c_{1}\] Hence solution (1) now becomes\[ x\left ( t\right ) =x_{0}\cos \omega _{n}t+c_{2}\sin \omega _{n}t+\frac{x_{st}}{1-r^{2}}\sin \omega t \] Taking derivative\[ \dot{x}\left ( t\right ) =-x_{0}\sin \omega _{n}t+c_{2}\omega _{n}\cos \omega _{n}t+\omega \frac{x_{st}}{1-r^{2}}\cos \omega t \] At \(t=0\) the above becomes\begin{align*} \dot{x}_{0} & =c_{2}\omega _{n}+\omega \frac{x_{st}}{1-r^{2}}\\ c_{2} & =\frac{\dot{x}_{0}}{\omega _{n}}-\frac{\omega }{\omega _{n}}\frac{x_{st}}{1-r^{2}}\\ & =\frac{\dot{x}_{0}}{\omega _{n}}-\frac{r}{1-r^{2}}x_{st} \end{align*}

Therefore the solution now becomes (again, this is for \(\omega \neq \omega _{n}\))\begin{equation} x\left ( t\right ) =x_{0}\cos \omega _{n}t+\left ( \frac{\dot{x}_{0}}{\omega _{n}}-\frac{r}{1-r^{2}}x_{st}\right ) \sin \omega _{n}t+\frac{x_{st}}{1-r^{2}}\sin \omega t \tag{2} \end{equation}

Notice the difference in the solution. Here is summary



ODE solution




\(m\ddot{x}+kx=F_{0}\cos \omega t\) \(x\left ( t\right ) =\left ( x_{0}-\frac{x_{st}}{1-r^{2}}\right ) \cos \omega _{n}t+\frac{\dot{x}_{0}}{\omega _{n}}\sin \omega _{n}t+\overset{x_{p}}{\overbrace{\frac{x_{st}}{1-r^{2}}\cos \omega t}}\)


\(m\ddot{x}+kx=F_{0}\sin \omega t\) \(x\left ( t\right ) =x_{0}\cos \omega _{n}t+\left ( \frac{\dot{x}_{0}}{\omega _{n}}-\frac{r}{1-r^{2}}x_{st}\right ) \sin \omega _{n}t+\overset{x_{p}}{\overbrace{\frac{x_{st}}{1-r^{2}}\sin \omega t}}\)


3.7.2 Solution to underdamped forced harmonic



ODE particular solution only




\(m\ddot{x}+c\dot{x}+kx=\frac{a_{0}}{2}\) \(x_{p}\left ( t\right ) =\frac{a_{0}}{2}\frac{1}{k}\)


\(m\ddot{x}+c\dot{x}+kx=a_{n}\cos \left ( n\omega t\right ) \) \(x_{p}\left ( t\right ) =\frac{a_{n}}{k}\frac{1}{\sqrt{\left ( 1-\left ( nr\right ) ^{2}\right ) ^{2}+\left ( 2\zeta nr\right ) ^{2}}}\cos \left ( n\omega t-\phi _{n}\right ) \)


\(m\ddot{x}+c\dot{x}+kx=b_{n}\sin \left ( n\omega t\right ) \) \(x_{p}\left ( t\right ) =\frac{b_{n}}{k}\frac{1}{\sqrt{\left ( 1-\left ( nr\right ) ^{2}\right ) ^{2}+\left ( 2\zeta nr\right ) ^{2}}}\sin \left ( n\omega t-\phi _{n}\right ) \)


Where \begin{align*} r & =\frac{\omega }{\omega _{n}}\\ \phi _{n} & =\tan ^{-1}\left ( \frac{2\zeta nr}{1-\left ( nr\right ) ^{2}}\right ) \end{align*}

3.7.3 unit Impulse respones

For undamped system \(m\ddot{x}+kx=\delta \left ( t\right ) \) the response (solution) is (notes calls these \(g\left ( t\right ) \))  \[ g\left ( t\right ) =\frac{1}{m\omega _{n}}\sin \left ( \omega _{n}t\right ) \] And for an underdamped \(m\ddot{x}+c\dot{x}+kx=\delta \left ( t\right ) \) the response is

\[ g\left ( t\right ) =\frac{1}{m\omega _{d}}e^{-\zeta \omega _{n}t}\sin \left ( \omega _{d}t\right ) \]

3.7.4 Duhamel Integral

   3.7.4.1 Some definitions

For arbitray forcing function \(F\left ( t\right ) \) which can be of any forum, the response of the system to \(F\left ( t\right ) \), assuming the system was at rest is

\[ x_{conv}\left ( t\right ) =\int _{0}^{t}F\left ( \tau \right ) g\left ( t-\tau \right ) d\tau \]

3.7.4.1 Some definitions

DLF Dynamic locad factor. \(DLF=\frac{x\left ( t\right ) }{x_{st}}\). But we really only care for the maximum DLF. When the input is constant (step input), the \(DLF_{\max }=2\).

Response spectrum Plots the DLF\(_{\max }\) on the \(y\) axis vs \(\frac{t}{T}\) where \(T\) is the period of the system on the \(x\) axis. This is done for typical inputs such as unit step, triangle, half sine, etc...

PDF