Processing math: 100%

2.1 HW1

  2.1.1 Problem 1
  2.1.2 Problem 2
  2.1.3 Problem 3
PDF (letter size)
PDF (legal size)

2.1.1 Problem 1

pict

From tables we find that for cantilever beam loaded at end, the vertical deflection is \delta =\frac{mL^{3}}{3EI}, hence by definition k_{b}=\frac{m}{\delta }=\frac{3EI}{L^{3}}.

pict

Therefore, we can model the stiffness of the system as

pict

Therefore \begin{align*} k_{eq} & =k+k_{beam}+k\\ & =2k+k_{beam} \end{align*}

Since k_{b}=\frac{3EI}{L^{3}} then the above becomes k_{eq}=2k+\frac{3EI}{L^{3}}

2.1.2 Problem 2

   2.1.2.1 Part (a)
   2.1.2.2 Part (b)

pict
2.1.2.1 Part (a)

Using energy method \frac{1}{2}m\dot{x}^{2}+\frac{1}{2}J_{0}\dot{\theta }^{2}=\frac{1}{2}J_{eq}\dot{\theta }_{eq}^{2} But \dot{\theta }_{eq}=\dot{\theta } for this part. And since x=R\theta or \dot{x}=R\dot{\theta }, then the above becomes \frac{1}{2}m\left ( R\dot{\theta }\right ) ^{2}+\frac{1}{2}J_{0}\dot{\theta }^{2}=\frac{1}{2}J_{eq}\dot{\theta }^{2} Simplifying gives J_{eq}=mR^{2}+J_{0}

2.1.2.2 Part (b)

Using energy method \frac{1}{2}m\dot{x}^{2}+\frac{1}{2}J_{0}\dot{\theta }^{2}=\frac{1}{2}m_{eq}\dot{x}_{eq}^{2} But \dot{x}_{eq}=\dot{x} for this part. And since x=R\theta or \dot{x}=R\dot{\theta }, then \dot{\theta }=\frac{\dot{x}}{R} and the above becomes \frac{1}{2}m\dot{x}^{2}+\frac{1}{2}J_{0}\left ( \frac{\dot{x}}{R}\right ) ^{2}=\frac{1}{2}m_{eq}\dot{x}^{2} Simplifying gives m_{eq}=m+\frac{J_{0}}{R^{2}}

2.1.3 Problem 3

   2.1.3.1 Mass equivalent
   2.1.3.2 Stiffness equivalent

pict

Assuming a small deflection as shown

pict
2.1.3.1 Mass equivalent

The kinetic energy of the system is (assuming small angles)

\frac{1}{2}m_{1}\left ( L_{1}\dot{\theta }\right ) ^{2}+\frac{1}{2}m_{2}\left ( L_{3}\dot{\theta }\right ) ^{2}=\frac{1}{2}I_{eq}\dot{\theta }^{2}

Hence

m_{1}L_{1}^{2}+m_{2}L_{3}^{2}=I_{eq}

Where I_{eq} is the equivalent mass moment of inertia. The problem does not say where the equivalent mass should be located relative to the pivot point (where the torsional spring is located) so we can stop here. But assuming that distance was some \bar{x}, then we can write I_{eq}=M_{eq}\bar{x}^{2} where equivalent  mass is used as a point mass, and simplify the above more

\begin{align*} m_{1}L_{1}^{2}+m_{2}L_{3}^{2} & =M_{eq}\bar{x}^{2}\\ M_{eq} & =\frac{m_{1}L_{1}^{2}+m_{2}L_{3}^{2}}{\bar{x}^{2}} \end{align*}

2.1.3.2 Stiffness equivalent

Using potential energy method, where energy stored by a spring due to extension or compression is \frac{1}{2}k\Delta ^{2}, then we see that the total energy using the above deformation is given by \frac{1}{2}k_{1}\left ( l_{1}\sin \theta \right ) ^{2}+\frac{1}{2}\left ( \frac{k_{3}k_{2}}{k_{3}+k_{2}}\right ) \left ( l_{2}\sin \theta \right ) ^{2}+\frac{1}{2}k_{t}\theta ^{2}=\frac{1}{2}k_{t,eq}\theta _{eq}^{2}

Where \frac{k_{3}k_{2}}{k_{3}+k_{2}} is the equivalent stiffness of the springs k_{2},k_{3} since they are in series. The above assumes small angle \theta , therefore we can simplify the above using \sin \theta \approx \theta , and obtain \frac{1}{2}k_{1}\left ( l_{1}\theta \right ) ^{2}+\frac{1}{2}\left ( \frac{k_{3}k_{2}}{k_{3}+k_{2}}\right ) \left ( l_{2}\theta \right ) ^{2}+\frac{1}{2}k_{t}\theta ^{2}=\frac{1}{2}k_{t,eq}\theta _{eq}^{2}

But here \theta =\theta _{eq}, therefore solving for k_{t,eq} gives k_{t,eq}=k_{1}l_{1}^{2}+\left ( \frac{k_{3}k_{2}}{k_{3}+k_{2}}\right ) l_{2}^{2}+k_{t}