4.1 Lecture Thursday April 4, 2013

Multidegree freedom system, free vibration, no damping

(1)[m]{v¨(t)}+[k]{v(t)}={0}

Assume {v(t)}={v^}sin(ωt+θ)

where {v^} is an amplitude vector of constants. Acts like shape function. Hence {v¨(t)}=ω2{v^}sin(ωt+θ). Substituting into Eq ??

[m](ω2{v^}sin(ωt+θ))+[k]{v^}sin(ωt+θ)={0}([m]ω2+[k]){v^}={0}

This is an eigenvalue problem. Hence det([k][m]ω2)=0

We obtain n unique eigenvalues ωi and corresponding n independent mode shapes {v^}i

([m]ωi2+[k]){v^}i={0}

Where {v^}i={1v2vn}i or {v^}i={φ1φ2φn}i. Hence for each ωi we get different shape function vector {v^}i. Let the mode shape matrix [Φ] be

[Φ]=[{v^}1,{v^}2,,{v^}n]={φ11φ12φ1nφ21φ22φ2nφn1φn2φnn}