2.11 HW10

  2.11.1 problem description
  2.11.2 problem 1
  2.11.3 Problem 2
  2.11.4 Problem 3
  2.11.5 Problem 4
  2.11.6 Problem 6
  2.11.7 Key solution for HW 10

2.11.1 problem description

PDF

PDF (letter size)
PDF (legal size)

2.11.2 problem 1

pict

Generalized coordinates are y3,y2,y1. Kinetic energy is T=12m3(y3)2+12m2(y2)2+12m1(y1)2. Potential energy due to springs is Vspring=12k3y32+12k2(y2y3)2+12k1(y1y2)2. ThereforeVspring=12k3y32+12k2(y22+y322y2y3)+12k1(y12+y222y1y2)=y32(12k3+12k2)+y22(12k2+12k1)+y12(12k1)+y1y2(k1)+y1y3(0)+y2y3(k2)

The EOM is[m1000m2000m3][y1y2y3]+[k1k10k1k2+k1k20k2k3+k2][y1y2y3]=[000]

Following values are for mass (units in kg) m1=100,m2=200,m3=300. Following values are for spring constants (units in N/m) k1=402(100),k2=502(200),k3=602(300). EOM becomes[100000200000300][y1y2y3]+[160000160000016000066000050000005000001580000][y1y2y3]=[000]

Characteristic equation isdet([K]ω2[M])=0det([160000160000016000066000050000005000001580000]ω2[100000200000300])=0det[160000100ω21600000160000660000200ω250000005000001580000300ω2]=06×106ω6+6.1×1010ω41.54×1014ω2+8.64×1016=0

Positive roots of the above polynomial are the natural frequencies (units in rad/sec). ω1=28.1ω2=52.6ω3=81.3

To obtain mode shapes, the eigenvector associated with each eigenvalue is found. Starting with ω1=28.1([160000160000016000066000050000005000001580000]28.12[100000200000300])[1φ21φ31]=[000]

Hence[8.1×10416000001600005.02×10550000005000001.34×106][1φ21φ31]=[000][8.1×1041.6×105φ215.02×105φ215.0×105φ311.6×1051.34×106φ315×105φ21]=[000]

Solving gives φ21=0.506 and φ31=0.188. First eigenvector is φ1=[10.5060.188]

For ω2=52.6,([160000160000016000066000050000005000001580000]52.62[100000200000300])[1φ22φ32]=[000]

Hence[1.17×1051.6×10501.6×1051.07×1055.0×10505.0×1057.50×105][1φ22φ32]=[000][1.6×105φ221.17×1051.07×105φ225.0×105φ321.6×1057.5×105φ325.0×105φ22]=[000]

Solving gives φ22=0.731 and φ32=0.476.Second eigenvector is φ2=[10.7310.476]

For ω3=81.3([160000160000016000066000050000005000001580000]81.32[100000200000300])[1φ23φ33]=[000]

Hence[5.01×1051.6×10501.6×1056.62×1055.0×10505.0×1054.03×105][1φ23φ33]=[000][1.6×105φ235.01×1056.62×105φ235.0×105φ331.6×1055.0×105φ234.03×105φ33]=[000]

Solving gives φ23=3.13 and φ32=φ33=3.82. Third eigenvector is φ3=[13.133.82]

Eigenvectors are mass normalized. Mass normalization factors μi are found for each eigenvectorμ1=φ1T[M]φ1=[10.5060.188]T[100000200000300][10.5060.188]=162.

andμ2=φ2T[M]φ2=[10.7310.476]T[100000200000300][10.7310.476]=275.

andμ3=φ3T[M]φ3=[13.133.82]T[100000200000300][13.133.82]=6.44×103

Normalized eigenvectors are Φ1=φ1μ1=1162[10.5060.188]=[7.86×1023.98×1021.48×102]Φ2=φ2μ2=1275.[10.7310.476]=[6.03×1024.41×1022.87×102]Φ3=φ3μ3=16.44×103[13.133.82]=[1.25×1020.0394.76×102]

Verification of the above result follows

EDU>> k=[160000 -160000 0;-160000 660000 -500000;0 -500000 1580000];
EDU>> M=[100 0 0;0 200 0;0 0 300];
EDU>> [eigV,lam]=eig(k,M)

eigV =
    0.0786    0.0606    0.0124
    0.0398   -0.0437   -0.0389
    0.0148   -0.0289    0.0477

lam =

   1.0e+03 *
    0.7897         0         0
         0    2.7528         0
         0         0    6.6242
EDU>> sqrt(diag(lam))

ans =

   28.1013
   52.4674
   81.3889

2.11.3 Problem 2

   2.11.3.1 Part (a) k=0.05mgL
   2.11.3.2 Part (b) k=2mgL

pict

Initial conditions are θi(0)=0 for i=1,2,3 and θ1(0)= θ3(0)=0 but θ2(0)=2 rad/sec.

The generalized coordinates are shown above. kinetic energy isT=12I(θ1)2+12I(θ2)2+12I(θ3)2

where I=13mL2. Mas matrix becomes[M]=13mL2[100010001][θ1θ2θ3]

Spring potential energy isVspring=12k(Lθ2Lθ1)2+12k(Lθ3Lθ2)2=12kL2(θ22+θ122θ1θ2)+12kL2(θ32+θ222θ2θ3)=θ12(12kL2)+θ22(12kL2+12kL2)+θ32(12kL2)+θ1θ2(kL2)+θ1θ3(0)+θ2θ3(kL2)

Hence stiffness matrix due to spring is[K]spring=kL2[110121011]

Assume the zero PE for gravity is taken as the top of the bar. Stiffness due to gravity isVg=mgL2(cosθ1+cosθ2+cosθ3)

V11=2Vgθ12=mgL2(cosθ1). Evaluate this at static position θ1=0,hence V11=mL2. Similarly, V22=V33=mL2. All other terms are zero.

Hence stiffness matrix due to gravity is[K]g=mgL2[100010001]

Therefore, complete stiffness matrix iskL2[110121011]+mgL2[100010001]

There are no generalized forces. Hence EOM is13mL2[100010001][θ1θ2θ3]+(kL2[110121011]+mgL2[100010001])[θ1θ2θ3]=[000]

2.11.3.1 Part (a) k=0.05mgL

For case k=0.05mgL, Hence for σ=0.05 then k=σmgL. EOM becomes

13mL2[100010001][θ1θ2θ3]+(σmgL[110121011]+mgL2[100010001])[θ1θ2θ3]=[000]13mL2[100010001][θ1θ2θ3]+mgL[12+σσ0σ12+2σσ0σ12+σ][θ1θ2θ3]=[000][100010001][θ1θ2θ3]+3gL[12+σσ0σ12+2σσ0σ12+σ][θ1θ2θ3]=[000]

Let L=1,g=10. The above becomes[100010001][θ1θ2θ3]+[15+30σ30σ030σ15+60σ30σ030σ15+30σ][θ1θ2θ3]=[000]

Natural frequencies of the system are found by solving the eigenvalue problem.det([15+30σ30σ030σ15+60σ30σ030σ15+30σ]ω2[100010001])=0

Substituting σ=0.05 givesdet([16.51.501.518.01.501.516.5]ω2[100010001])=0det[16.5ω21.501.518ω21.501.516.5ω2]=0ω6+51ω4861.75ω2+4826.3=0

Positive roots of this polynomial are ω=3.87,ω=4.062,ω=4.416.

Associated eigenvectors are found by solving for φi in ([K]ω2[M])φi=0 for each eigenvalue ωi.

For ω1=3.87 [16.5ω121.501.518ω121.501.516.5ω12][1φ21φ31]=[000][16.53.8721.501.5183.8721.501.516.53.872][1φ21φ31]=[000][1.5231.501.53.0231.501.51.523][1φ21φ31]=[000][1.5231.5φ213.023φ211.5φ311.51.523φ311.5φ21]=[000]

Solving gives φ21=1.0153 and φ31=1.0462. First eigenvector isφ1=[1φ21φ31]=[11.01531.0462]

Similarly, second and the third eigenvectors are found.

Eigenvectors are mass normalized. First the mass normalization factors μi are found for each eigenvectorμ1=φ1T[M]φ1=[11.01531.0462]T[100010001][11.01531.0462]=3.1254

Normalized eigenvector isΦ1=φ13.1254=13.792[11.01531.0462]=[0.513530.521390.53726]

Verification of the above result (Matlab result is more accurate due to more accurate method used)

EDU>>  k=[0.55 -0.05 0;-0.05 0.6 -0.05;0 -0.05 0.55];
EDU>> M=eye(3);
EDU>> [eigV,lam]=eig(k,M)

eigV =

   -0.5774   -0.7071    0.4082
   -0.5774   -0.0000   -0.8165
   -0.5774    0.7071    0.4082

EDU>> sqrt(diag(lam))

ans =

    0.7071
    0.7416
    0.8062

Transformation matrix (based on Matlab more accurate result) is Φ=[Φ1Φ2Φ3]=[0.5770.70730.40820.57700.81650.5770.70690.4082] Mapping from physical coordinates θ to modal coordinates η isθ=[Φ]η

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates resulting in[100010001][η1η2η3]+[ω12000ω22000ω22][η1η2η3]=[000][100010001][η1η2η3]+[0.707120000.741620000.80622][η1η2η3]=[000]

Initial conditions are transformed to modal coordinates using η(0)=[Φ]T[M]θ(0) and η(0)=[Φ]T[M]θ(0), since θ(0)=0 then η(0)=0, however θ(0) is not all zero, hence[η1(0)η2(0)η3(0)]=[0.5770.70730.40820.57700.81650.5770.70690.4082]T[100010001][020]=[1.15401.633]

Initial conditions in modal coordinates  are found. The solution can be found. The solution to η+ω2η=0 with initial conditions η(0) and η(0) is η(t)=η(0)cosωt+η(0)ωsinωt. Therefore modal solutions areη1(t)=1.1540.7071sin(0.7071t)=1.632sin(0.707t)η2(t)=0η3(t)=1.6330.8062sin(0.8062t)=2.026sin(0.8062t)

Solution in the normal coordinates is[θ1(t)θ2(t)θ3(t)]=[0.5770.70730.40820.57700.81650.5770.70690.4082][1.632sin(0.707t)02.026sin(0.8062t)]=[0.94166sin(0.707t)0.82701sin(0.8062t)0.94166sin(0.707t)+1.6542sin(0.8062t)0.94166sin(0.707t)0.82701sin(0.8062t)]

2.11.3.2 Part (b) k=2mgL

Using part (a), but with σ=2 results indet([15+30σ30σ030σ15+60σ30σ030σ15+30σ]ω2[100010001])=0

det([15+30(2)30(2)030(2)15+60(2)30(2)030(2)15+30(2)]ω2[100010001])=0det[75.0ω260.0060.0135.0ω260.0060.075.0ω2]=0

Similar steps as repeated as part (a) above. The final result are shown below using Matlab

EDU>> k=[75 -60 0;-60 135 -60;0 -60 75]
EDU>> M=eye(3);
[eigV,lam]=eig(k,M)

eigV =

   -0.5774   -0.7071    0.4082
   -0.5774    0.0000   -0.8165
   -0.5774    0.7071    0.4082
EDU>> sqrt(diag(lam))

    3.8730
    8.6603
   13.9642

Transformation matrix is Φ=[Φ1Φ2Φ3]=[0.5770.70710.40820.57700.81650.5770.70710.4082]. Mapping from θ to modal coordinates η isθ=[Φ]η

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates resulting in[100010001][η1η2η3]+[ω12000ω22000ω22][η1η2η3]=[000][100010001][η1η2η3]+[3.873020008.6603200013.96422][η1η2η3]=[000]

Initial conditions are transformed to modal coordinates using η(0)=[Φ]T[M]x(0) and η(0)=[Φ]T[M]θ(0), since θ(0)=0 then η(0)=0, however θ(0) is not all zero. Similar to part (a), initial conditions are found [η1(0)η2(0)η3(0)]=[1.15401.633]

The solution to η+λ2η=0 with initial conditions η(0) and η(0) is given by η(t)=η(0)cosλt+η(0)λsinλt. The solutions areη1(t)=1.1543.8730sin(3.873t)=0.29796sin(3.873t)η2(t)=0η3(t)=1.63313.9642sin(13.9642)=0.11694sin(13.9642)

Solution in the physical coordinates is[θ1(t)θ2(t)θ3(t)]=[0.5770.70710.40820.57700.81650.5770.70710.4082][0.29796sin(3.8730t)00.11694sin(13.9642t)]=[0.17192sin(3.873t)4.7735×102sin(13.964t)9.5482×102sin(13.964t)+0.17192sin(3.873t)0.17192sin(3.873t)4.7735×102sin(13.964t)]

Summary table





k frequencies [Φ] solutions in θ




0.05mgL {0.70710.74160.8062} [0.57740.70710.40820.577400.81650.57740.70710.4082] [0.94166sin(0.707t)0.82701sin(0.8062t)0.94166sin(0.707t)+1.6542sin(0.8062t)0.94166sin(0.707t)0.82701sin(0.8062t)]




2mgL {3.87308.660313.9642} [0.57740.70710.40820.577400.81650.57740.70710.4082] [0.17192sin(3.873t)4.7735×102sin(13.964t)9.5482×102sin(13.964t)+0.17192sin(3.873t)0.17192sin(3.873t)4.7735×102sin(13.964t)]




Even though the normalized natural frequencies are different, the shape functions are the same.

Plots of the solutions of θi(t) for both cases are made. For the case of k=0.05mgL

pict

For k=2mgL

pict

In addition, a small program is written to animate both the full solution and the modal solutions. The program to animate the full solution is at http://12000.org/my_courses/univ_wisconson_madison/spring_2013/EMA_545_Mechanical_Vibrations/HWs/HW10/HW10p2.m.txt while the program that animate the modal solution is number 112 at bottom of this page http://12000.org/my_notes/my_matlab_functions/index.htm

2.11.4 Problem 3

pict

EOM is

[600400200400120002000800]{x1x2x3}+[5003004003009006004006001300]{x1x2x3}+103[30002000500300200300700]{x1x2x3}={200cos(16t)00}

Initial conditions are {x1(0)x2(0)x3(0)}={000} and {x1(0)x2(0)x3(0)}={000}.

Solve the eigenvalue problem to determine the natural frequencies of the systemdet([K]ω2[M])=0det([300×1030200×1030500×103300×103200×103300×103700×103]ω2[600400200400120002000800])=04.0×108ω6+1.044×1012ω44.72×1014ω2+5.8×1016=0

Positive roots are {ω=15.052,ω=17.562,ω=45.552}. For each natural frequency the corresponding eigenvector is found. A program is now used to compute these values.

EDU>> k = [300 0 -200;0 500 300;-200 300 700]*10^3;
M = [600 400 200;400 1200 0;200 0 800];
C = [500 300 -400;300 900 600;-400 600 1300];
[PHI,lam] = eig(k,M);
PHI
lam   = sqrt(diag(lam))
CC    = PHI'*C*PHI;
zeta1 = CC(1,1)/(2*lam(1))
zeta2 = CC(2,2)/(2*lam(2))
zeta3 = CC(3,3)/(2*lam(3))

PHI =
   -0.0216    0.0232   -0.0373
    0.0203    0.0168    0.0201
   -0.0220    0.0023    0.0302

lam =
   15.0519
   17.5624
   45.5522


zeta1 =
    0.0018

zeta2 =
    0.0219

zeta3 =
    0.0376

[Φ]=[0.02160.02320.03730.02030.01680.02010.02200.00230.0302]. In modal coordinates EOM is

[100010001]{η1η2η3}+[Φ]T[5003004003009006004006001300][Φ]{η1η2η3}+[ω12000ω22000ω32]{η1η2η3}=[Φ]T{200cos(16t)00}[100010001]{η1η2η3}+[5.419×1025.331×1020.4165.331×1020.7683.52×1040.41563.52×1043.428]{η1η2η3}+[ω12000ω22000ω32]{η1η2η3}=[Φ]T{200cos(16t)00}[100010001]{η1η2η3}+[2ζ1ω10002ζ2ω20002ζ3ω3]{η1η2η3}+[ω12000ω22000ω32]{η1η2η3}=[Φ]T{200cos(16t)00}

In the above 2ζ1ω1=0.0542, 2ζ2ω2=0.7676 and 2ζ3ω3=3.4247. Hence ζ1=5.4193×1022(15.0519)=0.0018 and ζ2=0.767552(17.5624)=0.0219 and ζ3=3.42472(45.5522)=0.0376

Final EOM in modal coordinates is[100010001]{η1η2η3}+[0.05420000.7680003.425]{η1η2η3}+[226.56000308.440002075]{η1η2η3}={4.32cos(16.0t)4.64cos(16.0t)7.46cos(16.0t)}

EOM’s to solve areη1+2ζ1ω1η1+ω12η1=4.32cos(16.0t)η2+2ζ2ω2η2+ω22η2=4.64cos(16.0t)η3+2ζ3ω3η3+ω32η3=7.46cos(16.0t)

Initial conditions are zero. The solution in modal coordinates is given in appendix B for underdamped case. Complete solution for the case of underdamped is given in appendix B asη(t)=F0β2+4ζ2ω2ϖ2{βcos(ϖt)+2ζωϖsin(ϖt)eζωt[βcos(ωdt)+ζωβωdsin(ωdt)]}h(t)

β=(ω2ϖ2), ωd=ω1ζ2.

The solutions in modal coordinates are now found. Recall that ω1= 15.0519,ω2=17.5624,ω3=45.5522 and ζ1=0.0018,ζ2= 0.0219 and ζ3=0.0376

Next step is to transform the solution to the physical coordinates using qj=m=13Φ(j,m)η(m), orq=[Φ]η

In component formq1(t)=Φ(1,1)η1(t)+Φ(1,2)η2(t)+Φ(1,3)η3(t)q2(t)=Φ(2,1)η1(t)+Φ(2,2)η2(t)+Φ(2,3)η3(t)q3(t)=Φ(3,1)η1(t)+Φ(3,2)η2(t)+Φ(3,3)η3(t)

Program was written to complete the computation and make plots. Here is the result showing plots of each of the above qi(t) vs. time

function nma_HW10_problem_3_EMA_545()
%solve for q(t) using modal analysis, by Nasser M. Abbasi
close all;

syms t;
N = 3;
k = [300 0 -200;0 500 300;-200 300 700]*10^3;
M = [600 400 200;400 1200 0;200 0 800];
C = [500 300 -400;300 900 600;-400 600 1300];
wF = 16;
F = [200*cos(wF*t); 0; 0];

[PHI,lam] = eig(k,M);
lam   = sqrt(diag(lam));
CC    = PHI'*C*PHI

F = PHI.'*F;
eta = sym(zeros(N, 1));
time_constant = zeros(3,1);

for i=1:N
    w    = lam(i);
    b    = w^2-wF^2;
    zeta = CC(i,i)/(2*w);
    wd   = w*sqrt(1-zeta^2);
    eta(i) = F(i)/(b^2+4*zeta^2*w^2*wF^2) * ...
        ( b*cos(wF*t)+2*zeta*w*wF*sin(wF*t)- ...
        exp(-zeta*w*t)* (  b*cos(wd*t)+ zeta*w*b/wd * sin(wd*t)  ) ...
        );
    time_constant(i) = 1/(zeta*w);
end

q=PHI*eta;
time_constant
time_constant = sum(time_constant);

% plot the generalized solutions
lims= [-0.004 0.003;
      -0.002  0.007;
                                                                                        
                                                                                        
      -0.006  0.002
      ];

for i=1:N
    subplot(3,1,i);
    ezplot(q(i),[0,100]);
    ylim(lims(i,:));
    title(sprintf('q(%d) solution, time constant = %f',i,time_constant));
    xlabel('time (sec)');
    ylabel('q(t) Newton');
end

end

pict

From above, the time to reach steady state is about 90 seconds based on looking at q1(t) since that takes the longest time to each steady state out of the three coordinates.

The time constant for each ηi(t) solution was calculated giving τ1=1ζ1ω1=37.4471 and τ2=2.602 and τ3=0.58.  The first time constant τ1=37.4 seconds dominated the result in the response in the physical coordinates.

This means the dominant time constant found in modal analysis is one to use to estimate how long it will take for the response in physical coordinates to reach steady state. Each modal solution contributes to each physical solution. The one with the longest time constant affects more than any other mode how long the physical solution takes to reach steady state.

2.11.5 Problem 4

   2.11.5.1 Part(a)
   2.11.5.2 Part(b)
   2.11.5.3 Part(c)

pict

[M]=[5334]kg,ω1=15.68 rad/sec,ω2=40.78 rad/sec. φ1={11.366},φ2={10.366}μ1={11.366}T[5334]{11.366}=4.2678μ2={10.366}T[5334]{10.366}=7.7318

Normalized eigenvectors are Φ1=1μ1φ1=14.2678{10.366}={0.484060.17717}Φ2=1μ2φ2=17.7318{10.366}={0.359630.13163}

Hence[Φ]=[Φ1Φ2]=[0.484060.359630.177170.13163]

EOM in modal coordinates is[1001]{η1η2}+[2(0.08)(15.68)002(0.08)(40.78)]{η1η2}+[15.6820040.782]{η1η2}=[Φ]T{50sin(20t)100cos(20t)}[1001]{η1η2}+[2.509006.5248]{η1η2}+[245.86001663]{η1η2}=[24.203sin(20.0t)17.717cos(20.0t)17.982sin(20.0t)13.163cos(20.0t)]

The two EOMs to solve areη1(t)+2.509η1(t)+245.86η1(t)=24.203sin(20t)17.717cos(20t)=Re{24.203iei20t}+Re{17.717ei20t}η2(t)+6.525η2(t)+1663η2(t)=17.982sin(20t)13.163cos(20t)=Re{17.982iei20t}+Re{13.163ei20t}

Henceη1(t)+2.509η1(t)+245.86η1(t)=24.203sin(20t)17.717cos(20t)=Re{(24.203i17.717)ei20t}η2(t)+6.525η2(t)+1663η2(t)=17.982sin(20t)13.163cos(20t)=Re{(17.982i13.163)ei20t}

In matrix form[I]η+[C]η+[K]η=Re{Feiϖt}

Where ϖ=20 rad/sec. F is the complex amplitude of the input F={24.203i17.71717.982i13.163}

Using method of transfer functions (since steady state response is needed), response isη=Re{Xei20t}

Where Xj=Fjϖ2+2iζjωjϖ+ωj2

Steady state solutions in modal coordinates isη1(t)=Re{24.203i17.717ϖ2+2.5088iϖ+245.86eiϖt}=Re{24.203i17.717400+50.176i+245.86eiϖt}=Re{(5.77×102+0.176i)eiϖt}η2(t)=Re{17.982i13.163ϖ2+6.525iϖ+1663eiϖt}=Re{17.982i13.163400+130.5i+1663eiϖt}=Re{(1.178×1021.302×102i)eiϖt}

Solutions are transformed back to normal coordinates q=[Φ]η

Henceqj(t)=n2Φ(j,n)η(n)=n2Φ(j,n)Re{X(n)eiϖt}=Ren2Φ(j,n)X(n)eiϖt

Since[Φ]= [0.484060.359630.177170.13163] thenq1(t)=Re({0.48406(5.77×102+0.176i)+0.35963(1.178×1021.302×102i)}ei20t)q2(t)=Re({0.17717(5.77×102+0.176i)0.13163(1.178×1021.302×102i)}ei20t)

orq1(t)=Re({2.369×102+8.051×102i}ei20t)q2(t)=Re({8.672×1032.947×102i}ei20t)

Therefore Y1=2.369×102+8.051×102iY2=8.672×1032.947×102i

sectionProblem 5

pict

2.11.5.1 Part(a)

First step is to determine EOM. The kinetic energy T isT=12I(θ)2+12m2(x)2

I=13m1L2.Assuming small angle, stiff spring approximation and zero gravity datum at the level where pendulum is hinged, spring potential energy V  isV=12k(xL2θ)2=12k(x2+L24θ2xLθ)=θ2(L28k)+x2(12k)+xθ(kL2)

Stiffness matrix due to spring isKspring=[L24kkL2kL2k]

Potential energy due to gravity is Vg=mgL2cosθ. Hence Vg11=2Vg2θ=(mgL2cosθ)θ=0=mgL2. All other terms are zero. The stiffness matrix due to gravity isKspring=[mgL2000]

Combined stiffness matrix isK=[L24k+mgL2kL2kL2k]

EOM is[I00m2]{θx}+[L24k+mgL2kL2kL2k]{θx}={QθQx}

Generalized forces are now found. Qθ=FL since F is only external forces acting on the first d.o.f. θ and the work done by this force is FLδθ for small virtual angle. For Qx work is done only by damper and acts to remove energy, hence negative in sign. Qx =cx. The above becomes[I00m2]{θx}+[L24k+mgL2kL2kL2k]{θx}={FLcx}

Rearranging[I00m2]{θx}+[000c]{θx}+[L24k+m2gL2kL2kL2k]{θx}={FL0}

Each EOM isIθ+(L24k+m1gL2)θkL2x=FLm2x+cxkL2θ+kx=0

Units checking: First EOM. each term must have units of torque. L24kθ have units of torque OK. mgL2θ have units of torque OK. kLx have units of torque OK.

second EOM Each term must have units of force. cx have units of force OK. kLθ have units of force, OK. kx have units of force, OK.

Transfer function is now found Let x=Re{Xeiϖt},θ=Re{Yeiϖt},F=Re{F^eiϖt}.Substitute in the above EOMRe{[(Iϖ2Y)+(L24k+m2gL2)YkL2X]eiϖt}=Re{F^Leiϖt}Re{[m2ϖ2X+icϖXkL2Y+kX]eiϖt}=0

Simplify(Iϖ2+L24k+m2gL2)YkL2X=F^L(m2ϖ2+icϖ+k)X=kL2Y

The above two equations are solved to obtain the required transfer functions X/F and Y/F. To obtain Y/F, the second equation solved for X in terms of Y X=kL2m2ϖ2+icϖ+kY

X in first equation is replaced by the giving(Iϖ2+L24k+m2gL2)YkL2kL2m2ϖ2+icϖ+kY=F^L(Iϖ2+L24k+m2gL2k2L24m2ϖ2+icϖ+k)Y=F^L

HenceY=1(13m1Lϖ2+L4k+m2g2k2L/4m2ϖ2+icϖ+k)F^

To obtain the transfer function X/F, the second equation is solved for Y in terms of XY=(m2ϖ2+icϖ+k)kL/2X

This is substituted in the first equation giving(Iϖ2+L24k+m2gL2)(m2ϖ2+icϖ+k)kL/2XkL2X=F^L[(13m1Lϖ2+L4k+m2g2)(m2ϖ2+icϖ+k)k/2kL2]X=F^L

HenceX=kL(13m1Lϖ2+L4k+m2g2)(m2ϖ2+icϖ+k)k2LF^

This complete part(a). These are the analytical expressions for the transfer functions.

2.11.5.2 Part(b)

Let m1=m2=1 kg, k=3 N/m, L=1 m, g=9.81 m/s2, c=0.1 N-s/m.

A program was written to plot the magnitude and phase spectrums of x(t) and θ(t) using the above numerical values. This was done for a range of forcing frequencies to cover both natural frequencies and beyond. Natural frequencies are found by solving the eigenvalue problem det([K]ω2[M])=0 ω1=1.1308 rad/secω2=4.3228 rad/sec

The magnitude and phase of each transfer function are evaluated when ϖ=ω1 and when ϖ=ω2.F=1 was assumed since its numerical value was not given. Result is shown below. From these plots, magnitude and phase values are determined at the natural frequencies.x(t)=Re{Xeiϖt}θ(t)=Re{Yeiϖt}

Table of results






response magnitude at ω1 phase at ω1 magnitude at ω2 phase at ω2





x(t) 4.25 830 2.62 131.70





θ(t) 2.55 800 11.5 500





ratio 4.25/2.55= 1.6667 11.5/2.62= 4.3893





Plots used to obtain these results

pict

pict

The function used to generate the plots

function nma_HW10_problem_5_EMA_545_spectrum()
%plots the spectrums of problem 5, HW10, by Nasser M. Abbasi
close all;

c  = 0.1;
g  = 9.81;
L  = 1;
k  = 3;
m1 = 1;
m2 = 1;
F  = 1;

M  = [1/3*m1*L^2 0;0 m2];
K  = [L^2/4*k+m2*g*L/2  -k*L/2;-k*L/2 k];
C  = [0 0;0 c];

[PHI,w] = eig(K,M);
lam     = sqrt(diag(w))

I = sqrt(-1);
X = @(wf) ((k*L)./((-1/3*m1*L*wf.^2+L/4*k+m2*g/2).*(-m2*wf.^2+I*c*wf+k)- (k^2*L)))*F;
Y = @(wf) (1./((-1/3*m1*L*wf.^2+L/4*k+m2*g/2-( k^2*L./(-m2*wf.^2+I*c*wf+k)))))*F;

N = 2;

for i=1:N
    figure(i);
    wf  = 0:0.1:6.5;

    if i==1
       name_='X';
       tf_ = X(wf);
    else
       name_='Y';
       tf_ = Y(wf);
    end

    subplot(2,1,1);
    plot(wf,abs(tf_));
                                                                                        
                                                                                        
    hold on;
    line([lam(1) lam(1)],[0 5],'LineStyle','-.');
    line([lam(2) lam(2)],[0 5],'LineStyle','-.');
    title(sprintf('magnitude spectrum of %c, $\\omega_1=%f$, $\\omega_2=%f$',name_,lam(1),lam(2)),'interpreter','latex','FontSize',12);
    xlabel('forcing frequency (rad/sec)');
    ylabel(sprintf('$|%c|$',name_),'interpreter','latex','FontSize',12);
    grid;

    subplot(2,1,2);
    plot(wf,angle(tf_));
    line([lam(1) lam(1)],[-5 5],'LineStyle','-.');
    line([lam(2) lam(2)],[-5 5],'LineStyle','-.');
    title(sprintf('phase spectrum of X, $\\omega_1=%f$, $\\omega_2=%f$',lam(1),lam(2)),'interpreter','latex','FontSize',12);
    xlabel('forcing frequency (rad/sec)');
    ylabel(sprintf('$arg(%c)$',name_),'interpreter','latex','FontSize',12);
    grid;
end

end

Eigenvectors Φ1 and Φ1 are now found, using modal analysis, which de-couples the EOM. The ratio of one component of the same eigenvector to its other component is found and compared with the result found above. The eigenvectors found areΦ1={0.54460.9493}Φ2={1.64420.3145}

The ratios are 0.9493/0.5446=1.7431 and 1.6442/0.3145=5.2280. Compare these to the ratios found






response magnitude at ω1 phase at ω1 magnitude at ω2 phase at ω2





x(t) 4.25 830 2.62 131.70





θ(t) 2.55 800 11.5 500





ratio 4.25/2.55=1.6667 11.5/2.62= 4.3893





These ratios are close to each others. Ratio Φ1j/Φ2j shows how much one dof (1) will change relative to dof (2) in mode j

2.11.5.3 Part(c)

Transfer functions are plotted in part(a). From magnitude spectrum of Y it is seen that |Y|=0 when ϖ between 1.5 and 2.0 rad/sec and also when ϖ>6 rad/sec. ωcart=km2=31=1.7321 rad/sec. This agrees with range found in plots. When km2=1.73, top mass acts as vibration absorber, and rod will not oscillate when F(t) is at this specific frequency.

2.11.6 Problem 6

pict

From HW6, problem 3f(t)=Pτt0<t<τ0τ<t<2τ

Let yss(t) be the solution from problem 3 found using FFT technique. Let the full solution for deflection of the above pillar be χ(y,t)=y(t)ψ(y)

y(t) is the time dependent (dynamic) part of the solution. This solution is yss(t) found in problem 3. ψ(y) is solution due to static loading. Also called the shape function. For cantilever beam with static force P at its end, deflection curve due to static loading P at end isψ(x)=P6EI(3Lx2x3)

Internal bending moment M(x,t)=EId2χ(x,t)dx2 and direct stress σ= M(x,t)cI where c is the section modulus. Assume c=h2. For yield, let σ=40MPa, thenM(x,t)=σIcEId2χ(x,t)dx2=σIc

I=112bh3.d2χ(x,t)dx2=yss(t)d2dx2P6EI(3Lx2x3)=yss(t)PLEI

Solve for P at yieldyss(t)PLEI=σyieldIcP=σyieldIyss(t)h2LEI

yss(t) from problem 3 has maximum value of 1.8 at t=10 sec. Given numerical values in the problem and using this maximum value of yss(t) then P can be found from above.

I am not sure this is the correct approach to solve this.We did not have any practice or examples on solving this type of vibration problem before. Need more time to study this subject.

2.11.7 Key solution for HW 10

PDF