Consider this 3 DOF system
Suppose a harmonic force \(f(t)=A\cos (\varpi t)\) is applied to the mass in the center. Use modal analysis to do the following:
A summary of the steps needed for full modal analysis is first given. In these steps, a column vector is shown as bold letter \(\mathbf {Y}\) and a matrix is shown as \(\left [ M\right ] \). In this summary, the system is assumed to have \(n\) degree of freedom.
The steps are
The EOM are derived in the hand out given. The force \(f\relax (t) \) acting on the second mass is now added, resulting in the following equations of motion for the system\[\begin {bmatrix} m & 0 & 0\\ 0 & m & 0\\ 0 & 0 & m \end {bmatrix}\begin {Bmatrix} q_{1}^{\prime \prime }\\ q_{2}^{\prime \prime }\\ q_{3}^{\prime \prime }\end {Bmatrix} +\begin {bmatrix} k_{1}+k_{2} & -k_{2} & 0\\ -k_{2} & k_{1}+2k_{2} & -k_{2}\\ 0 & -k_{2} & k_{1}+k_{2}\end {bmatrix}\begin {Bmatrix} q_{1}\\ q_{2}\\ q_{3}\end {Bmatrix} =\begin {Bmatrix} 0\\ A\cos (\varpi t)\\ 0 \end {Bmatrix} \]
The first step is to obtain the natural frequencies of the system. This is done by solving the eigenvalue problem \(\det \left (\left [ K\right ] -\omega ^{2}\left [ M\right ] \right ) =0\). The solutions are also given in handout. They are \(\omega _{1}^{2}=\frac {k_{1}}{m},\omega _{2}^{2}=\frac {k_{1}+k_{2}}{m},\omega _{3}^{2}=\frac {k_{1}+3k_{2}}{m}\). The non mass normalized eigenvectors associated with these eigenvalues are found as \[ \mathbf {\varphi }_{1}=\begin {Bmatrix} 1\\ 1\\ 1 \end {Bmatrix} ,\mathbf {\varphi }_{2}=\begin {Bmatrix} 1\\ 0\\ -1 \end {Bmatrix} ,\mathbf {\varphi }_{3}=\begin {Bmatrix} 1\\ -2\\ 1 \end {Bmatrix} \]
The next step is to mass normalize the eigenvectors as follows\begin {align*} \mu _{1} & =\mathbf {\varphi }_{1}^{T}\left [ M\right ] \mathbf {\varphi }_{1}=\begin {Bmatrix} 1\\ 1\\ 1 \end {Bmatrix} ^{T}\begin {bmatrix} m & 0 & 0\\ 0 & m & 0\\ 0 & 0 & m \end {bmatrix}\begin {Bmatrix} 1\\ 1\\ 1 \end {Bmatrix} =3m\\ \mu _{2} & =\mathbf {\varphi }_{2}^{T}\left [ M\right ] \mathbf {\varphi }_{2}=\begin {Bmatrix} 1\\ 0\\ -1 \end {Bmatrix} ^{T}\begin {bmatrix} m & 0 & 0\\ 0 & m & 0\\ 0 & 0 & m \end {bmatrix}\begin {Bmatrix} 1\\ 0\\ -1 \end {Bmatrix} =2m\\ \mu _{3} & =\mathbf {\varphi }_{3}^{T}\left [ M\right ] \mathbf {\varphi }_{3}=\begin {Bmatrix} 1\\ -2\\ 1 \end {Bmatrix} ^{T}\begin {bmatrix} m & 0 & 0\\ 0 & m & 0\\ 0 & 0 & m \end {bmatrix}\begin {Bmatrix} 1\\ -2\\ 1 \end {Bmatrix} =6m \end {align*}
Hence the mass normalized eigenvectors are\begin {align*} \mathbf {\Phi }_{1} & =\frac {\mathbf {\varphi }_{1}}{\sqrt {\mu _{1}}}=\frac {1}{\sqrt {3m}}\begin {Bmatrix} 1\\ 1\\ 1 \end {Bmatrix} \\ \mathbf {\Phi }_{2} & =\frac {\mathbf {\varphi }_{2}}{\sqrt {\mu _{2}}}=\frac {1}{\sqrt {2m}}\begin {Bmatrix} 1\\ 0\\ -1 \end {Bmatrix} \\ \mathbf {\Phi }_{3} & =\frac {\mathbf {\varphi }_{3}}{\sqrt {\mu _{3}}}=\frac {1}{\sqrt {6m}}\begin {Bmatrix} 1\\ -2\\ 1 \end {Bmatrix} \end {align*}
Hence the modal transformation matrix \(\left [ \Phi \right ] \) is\[ \left [ \Phi \right ] =\left [ \mathbf {\Phi }_{1}\mathbf {\Phi }_{2}\mathbf {\Phi }_{3}\right ] =\frac {1}{\sqrt {m}}\begin {bmatrix} \frac {1}{\sqrt {3}} & \frac {1}{\sqrt {2}} & \frac {1}{\sqrt {6}}\\ \frac {1}{\sqrt {3}} & 0 & \frac {-2}{\sqrt {6}}\\ \frac {1}{\sqrt {3}} & \frac {-1}{\sqrt {2}} & \frac {1}{\sqrt {6}}\end {bmatrix} =\frac {1}{\sqrt {m}}\begin {bmatrix} 0.577\, & 0.707\, & 0.408\,\\ 0.577\, & 0 & -0.816\,\\ 0.577\, & -0.707\, & 0.408\, \end {bmatrix} \allowbreak \allowbreak \]
The modal EOM’s are now found using the modal transformation matrix \(\left [ \Phi \right ] \) \begin {align*} \left [ \Phi \right ] ^{T}\left [ M\right ] \left [ \Phi \right ] \left \{ \eta ^{\prime \prime }\right \} +\left [ \Phi \right ] ^{T}\left [ K\right ] \left [ \Phi \right ] \left \{ \eta \right \} & =\left [ \Phi \right ] ^{T}\mathbf {Q}\\\begin {bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end {bmatrix}\begin {Bmatrix} \eta _{1}^{\prime \prime }\\ \eta _{2}^{\prime \prime }\\ \eta _{3}^{\prime \prime }\end {Bmatrix} +\begin {bmatrix} \omega _{1}^{2} & 0 & 0\\ 0 & \omega _{2}^{2} & 0\\ 0 & 0 & \omega _{3}^{2}\end {bmatrix}\begin {Bmatrix} \eta _{1}\\ \eta _{2}\\ \eta _{3}\end {Bmatrix} & =\left [ \Phi \right ] ^{T}\begin {Bmatrix} 0\\ A\cos (\varpi t)\\ 0 \end {Bmatrix} \\\begin {bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end {bmatrix}\begin {Bmatrix} \eta _{1}^{\prime \prime }\\ \eta _{2}^{\prime \prime }\\ \eta _{3}^{\prime \prime }\end {Bmatrix} +\frac {1}{m}\begin {bmatrix} k_{1} & 0 & 0\\ 0 & k_{1}+k_{2} & 0\\ 0 & 0 & k_{1}+3k_{2}\end {bmatrix}\begin {Bmatrix} \eta _{1}\\ \eta _{2}\\ \eta _{3}\end {Bmatrix} & =\frac {1}{\sqrt {m}}\begin {bmatrix} 0.577\, & 0.707\, & 0.408\,\\ 0.577\, & 0 & -0.816\,\\ 0.577\, & -0.707\, & 0.408\, \end {bmatrix} ^{T}\allowbreak \begin {Bmatrix} 0\\ A\cos (\varpi t)\\ 0 \end {Bmatrix} \\\begin {bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end {bmatrix}\begin {Bmatrix} \eta _{1}^{\prime \prime }\\ \eta _{2}^{\prime \prime }\\ \eta _{3}^{\prime \prime }\end {Bmatrix} +\frac {1}{m}\begin {bmatrix} k_{1} & 0 & 0\\ 0 & k_{1}+k_{2} & 0\\ 0 & 0 & k_{1}+3k_{2}\end {bmatrix}\begin {Bmatrix} \eta _{1}\\ \eta _{2}\\ \eta _{3}\end {Bmatrix} & =\frac {1}{\sqrt {m}}\begin {Bmatrix} 0.577\,A\cos \left (\varpi t\right ) \\ 0\\ -0.816\,A\cos \left (\varpi t\right ) \end {Bmatrix} \end {align*}
Therefore, the \(3\) uncoupled modal EOM’s are\begin {align*} \eta _{1}^{\prime \prime }\relax (t) +\frac {k_{1}}{m}\eta _{1}\left ( t\right ) & =\frac {0.577\,A}{\sqrt {m}}\cos \left (\varpi t\right ) \\ \eta _{2}^{\prime \prime }\relax (t) +\frac {k_{1}+k_{2}}{m}\eta _{2}\left ( t\right ) & =0\\ \eta _{3}^{\prime \prime }\relax (t) +\frac {k_{1}+3k_{2}}{m}\eta _{3}\relax (t) & =-\frac {0.816\,A}{\sqrt {m}}\cos \left (\varpi t\right ) \end {align*}
To complete the solution, the above EOM are written as follows by using complex form for the loading vector\begin {align*} \eta _{1}^{\prime \prime }\relax (t) +\frac {k_{1}}{m}\eta _{1}\left ( t\right ) & =\operatorname {Re}\left (\frac {0.577\,A}{\sqrt {m}}e^{i\varpi t}\right ) \\ \eta _{2}^{\prime \prime }\relax (t) +\frac {k_{1}+k_{2}}{m}\eta _{2}\left ( t\right ) & =0\\ \eta _{3}^{\prime \prime }\relax (t) +\frac {k_{1}+3k_{2}}{m}\eta _{3}\relax (t) & =\operatorname {Re}\left (\frac {-0.816\,A}{\sqrt {m}}e^{i\varpi t}\right ) \end {align*}
Assuming the steady state solution is\[ \mathbf {\eta }=\operatorname {Re}\left (\mathbf {\hat {X}}e^{i\varpi t}\right ) \]
or in expanded form\begin {align*} \eta _{1}\relax (t) & =\operatorname {Re}\left (\hat {X}_{1}e^{i\varpi t}\right ) \\ \eta _{2}\relax (t) & =\operatorname {Re}\left (\hat {X}_{2}e^{i\varpi t}\right ) \\ \eta _{3}\relax (t) & =\operatorname {Re}\left (\hat {X}_{3}e^{i\varpi t}\right ) \end {align*}
Where\begin {align*} \hat {X}_{1} & =\frac {\frac {0.577\,A}{\sqrt {m}}}{\omega _{1}^{2}+2i\zeta _{1}\omega _{1}\varpi -\varpi ^{2}}\\ \hat {X}_{2} & =0\\ \hat {X}_{3} & =\frac {\frac {-0.816\,A}{\sqrt {m}}}{\omega _{3}^{2}+2i\zeta _{3}\omega _{3}\varpi -\varpi ^{2}} \end {align*}
Dividing the numerator and the denominator by \(\omega _{i}^{2}\) where \(i=1,2,3\) and using \(r_{i}=\frac {\varpi }{\omega _{i}}\) and letting \(\zeta =0\) since no damping exists, results in \begin {align*} \hat {X}_{1} & =\frac {A\sqrt {m}}{k_{1}}\left (\frac {0.577}{1-m\frac {\varpi ^{2}}{k_{1}}}\right ) \\ \hat {X}_{2} & =0\\ \hat {X}_{3} & =\frac {A\sqrt {m}}{k_{1}+3k_{2}}\left (\frac {-0.816\,}{1-m\frac {\varpi ^{2}}{k_{1}+3k_{2}}}\right ) \end {align*}
To sketch these amplitudes, the equations are normalized. This is in effect the same as setting \(m=1,k_{1}=k_{2}=1,A=1\) resulting in
\[ \mathbf {\hat {X}=}\begin {Bmatrix} \hat {X}_{1}\\ \hat {X}_{2}\\ \hat {X}_{3}\end {Bmatrix} =\begin {Bmatrix} \frac {0.577}{1-\varpi ^{2}}\\ 0\\ \frac {1}{4}\left (\frac {-0.816\,}{1-\frac {\varpi ^{2}}{4}}\right ) \end {Bmatrix} \]
Here is a plot of each \(X_{i}\) vs \(\varpi \). The x-axis is the nondimensional forcing frequency \(\Omega \)
Since there is no damping, resonance will occur at \(\Omega =1\) in first mode and at \(\Omega =2\) for mode \(3\).
The transformation from modal coordinates to normal coordinates is\[ \mathbf {q}=\left [ \Phi \right ] \mathbf {\eta }\]
In expanded form\[\begin {Bmatrix} q_{1}\\ q_{2}\\ q_{3}\end {Bmatrix} =\begin {Bmatrix} \Phi _{1}^{T}\left \{ \eta \right \} \\ \Phi _{2}^{T}\left \{ \eta \right \} \\ \Phi _{3}^{T}\left \{ \eta \right \} \end {Bmatrix} \]
But \(\left [ \Phi \right ] =\frac {1}{\sqrt {m}}\begin {bmatrix} 0.577\, & 0.707\, & 0.408\,\\ 0.577\, & 0 & -0.816\,\\ 0.577\, & -0.707\, & 0.408\, \end {bmatrix} \) and \(\mathbf {\eta }=\operatorname {Re}\left (\mathbf {\hat {X}}e^{i\varpi t}\right ) \) hence the above becomes\begin {align*} \begin {Bmatrix} q_{1}\\ q_{2}\\ q_{3}\end {Bmatrix} & =\begin {Bmatrix}\begin {Bmatrix} 0.577\,\\ 0.577\,\\ 0.577\, \end {Bmatrix} ^{T}\begin {Bmatrix} \operatorname {Re}\left (\hat {X}_{1}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{2}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{3}e^{i\varpi t}\right ) \end {Bmatrix} \\\begin {Bmatrix} 0.707\,\,\\ 0\,\\ -0.707\, \end {Bmatrix} ^{T}\begin {Bmatrix} \operatorname {Re}\left (\hat {X}_{1}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{2}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{3}e^{i\varpi t}\right ) \end {Bmatrix} \\\begin {Bmatrix} 0.408\,\\ -0.816\,\,\\ 0.408\,\, \end {Bmatrix} ^{T}\begin {Bmatrix} \operatorname {Re}\left (\hat {X}_{1}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{2}e^{i\varpi t}\right ) \\ \operatorname {Re}\left (\hat {X}_{3}e^{i\varpi t}\right ) \end {Bmatrix} \end {Bmatrix} \\ & =\begin {Bmatrix} 0.577\,\operatorname {Re}\left (X_{1}e^{it\varpi }\right ) +0.577\,\operatorname {Re}\left (X_{2}e^{it\varpi }\right ) +0.577\,\operatorname {Re}\left (X_{3}e^{it\varpi }\right ) \allowbreak \\ 0.707\,\operatorname {Re}\left (X_{1}e^{it\varpi }\right ) -0.707\,\operatorname {Re}\left (X_{3}e^{it\varpi }\right ) \allowbreak \\ 0.408\,\operatorname {Re}\left (X_{1}e^{it\varpi }\right ) -0.816\,\operatorname {Re}\left (X_{2}e^{it\varpi }\right ) +0.408\,\operatorname {Re}\left (X_{3}e^{it\varpi }\right ) \end {Bmatrix} \\ & =\operatorname {Re}\left ( \begin {Bmatrix} 0.577\,X_{1}+0.577\,X_{2}+0.577\,X_{3}\allowbreak \\ 0.707\,X_{1}-0.707\,X_{3}\allowbreak \\ 0.408\,X_{1}-0.816\,X_{2}+0.408\,X_{3}\end {Bmatrix} e^{i\varpi t}\right ) \end {align*}
Comparing the above to \(\mathbf {q}_{ss}=\operatorname {Re}\left ( \mathbf {Y}e^{i\varpi t}\right ) \) shows that
\[ \mathbf {Y}=\begin {Bmatrix} 0.577\,X_{1}+0.577\,X_{2}+0.577\,X_{3}\allowbreak \\ 0.707\,X_{1}-0.707\,X_{3}\allowbreak \\ 0.408\,X_{1}-0.816\,X_{2}+0.408\,X_{3}\end {Bmatrix} \]
To plot each \(Y_{i}\), let \(m=1,k_{1}=1,k_{2}=1,A=1\), and letting \(X_{2}=0\) as found earlier, results in
\[ \mathbf {Y}=\begin {Bmatrix} 0.577\,\frac {0.577}{1-\varpi ^{2}}+\frac {0.577}{4}\,\left (\frac {-0.816\,}{1-\frac {\varpi ^{2}}{4}}\right ) \allowbreak \\ 0.707\frac {0.577}{1-\varpi ^{2}}-\frac {0.707}{4}\,\left (\frac {-0.816\,}{1-\frac {\varpi ^{2}}{4}}\right ) \\ 0.408\,\frac {0.577}{1-\varpi ^{2}}+\frac {0.408}{4}\,\left (\frac {-0.816\,}{1-\frac {\varpi ^{2}}{4}}\right ) \end {Bmatrix} \]
The above shows that when the nondimensional frequency \(\Omega \) is not close to a one of the nondimensional natural frequencies, then the \(Y\) values have comparable magnitudes. For nondimensional frequency \(\Omega \) larger than \(3\) all amplitude are zero, which means the whole system does not oscillate any more in steady state.