2.6 HW5

  2.6.1 problem description
  2.6.2 problem 1
  2.6.3 problem 2
  2.6.4 Problem 3
  2.6.5 problem 4
  2.6.6 Key solution for HW 5

2.6.1 problem description

PDF

PDF (letter size)
PDF (legal size)

2.6.2 problem 1

pict

Assuming the 2 masses move together (else we will have 2 systems and 2 equations of motions. Hence I assumed that they move together as one body).(m1+m2)y+yμ+ky=f(t)

Since y(t)=Asin(ωt) hence y(t)=Re(Aieiωt) Let f(t)=Re(F^iei(ωt)) Where F^ is the complex amplitude of the force. Now we substitute all these in the differential equation above.y=Re(ωAeiωt)y=Re(iω2Aeiωt)

(m1+m2)y+yμ+ky=Re(F^iei(ωt))Re(iω2Aeiωt)(m1+m2)+Re(ωAeiωt)μ+kRe(Aieiωt)=Re(F^iei(ωt))Re[(iω2(m1+m2)+ωμ+1ik)Aeiωt]=Re(F^iei(ωt))(iω2(m1+m2)+ωμ+1ik)A=F^i

Hence F^=(ω2(m1+m2)+iωμ+k)A

k=3.2×103 Nm,μ=40 Ns/m,A=0.02 meter. When ω=75rad/sec the above becomesF^=(752(1.5)+i75×40+3.2×103)0.02=104.75+60.0i

Hence Re(F^)=104.75N and the phase is tan1(60.0104.75)=2.62 rad/sec.

When ω=85F^=1.5(852+i85401.5+2133.3)0.02=152.75+68.0i

Re(F^)=152.75 N and the phase is tan1(68152.75)=2.722 rad/sec.

2.6.3 problem 2

   2.6.3.1 Part(a)
   2.6.3.2 part(b)
   2.6.3.3 Part(c)

pict

2.6.3.1 Part(a)

Force transmitted to floor is given byFtr=cz+kz

Let f(t)=Fcos(ωt)=Re(Feiωt)=Re(Feiωt) where we are given that F=20×103 N. ω=2π(180060)=60π=188.50 rad/sec or 30 Hz.

Let zss=Re(Fk|D|ei(ωtϕ)) where ϕ=tan1(2ζr1r2) and |D|=1(1r2)2+(2ζr)2. and r=ωωn Hence z=Re(iωFk|D|ei(ωtϕ))=Re(ωFk|D|ei(ωtϕ+π2)). ThereforeFtr=cRe(ωFk|D|ei(ωtϕ+π2))+kRe(Fk|D|ei(ωtϕ))

Where c=2ζωnm  and When Ftr=2×103N . We now solve for k from2×1032ζωnmRe(ωFk|D|ei(ωtϕ+π2))+kRe(Fk|D|ei(ωtϕ))

Taking the maximum case for RHS where exponential are unity magnitude, hence2×103=2ζωnmωFk|D|+F|D|=(2ζωnmω(Fk)+F)|D|=F(1+2ζωnmkω)(1r2)2+(2ζr)2

Where r=ωωn=ωkm. Hence the above becomes2×103=F(1+2ζωnmkω)(1ω2km)2+(2ζωkm)2

In the above everything is known except for k which we solve for. Plugging the numerical values given. ω=2π(180060),m=450,F=20×103,ζ=0.03 hence2×103=20×103(1+2(0.03)k450450k(60π))(1450(60π)2k)2+(2(0.03)60πk450)2

Hence k=1.2135×106 N/m. Hence ωn=km=1.2135×106450=51.929 rad/sec or 8.265 Hz.

2.6.3.2 part(b)

The total displacement is given byz(t)=ztransient(t)+zss(t)=eζωnt(Acosωdt+Bsinωdt)+Re(Fk|D|ei(ωtϕ))

Where ztransient(t)=eζωnt(Acosωdt+Bsinωdt)

Assuming at t=0 the system is relaxed hence z(0)=0 and z(0)=0 we can determine A,B from Eq ??.

At t=0,

z(0)=0=A+Re(Fk|D|eiϕ)

Hence A=Re(Fk|D|eiϕ)

and z(t)=ζωneζωnt(Acosωdt+Bsinωdt)+eζωnt(ωdAsinωdt+ωdBcosωdt)+Re(ωFk|D|ei(ϕ+π2))

Hence at t=0z(0)=0=ζωnA+ωdB+Re(ωFk|D|ei(ϕ+π2))

HenceB=ζωnωdA1ωdRe(ωFk|D|ei(ϕ+π2))=ζωnωdRe(Fk|D|eiϕ)1ωdRe(ωFk|D|ei(ϕ+π2))

Therefore the displacement isz(t)=eζωnt[Re(Fk|D|eiϕ)cosωdt+{ζωnωdRe(Fk|D|eiϕ)1ωdRe(ωFk|D|ei(ϕ+π2))}sinωdt]+Re(Fk|D|ei(ωtπ2ϕ))

Hence expressed in sin and cosz(t)=(Fk|D|cosϕ)eζωntcosωdt+eζωnt{ζωnωd(Fk|D|cosϕ)1ωd(ωFk|D|sinϕ)}sinωdt+Fk|D|cos(ωtϕ)=(Fk|D|cosϕ)eζωntcosωdt+eζωntF|D|ωdk(ζωncosϕωsinϕ)sinωdt+Fk|D|cos(ωtϕ)=Fk|D|eζωnt[cosϕcosωdt+1ωd(ζωncosϕωsinϕ)sinωdt]+Fk|D|cos(ωtϕ)

Since ζ=0.03 then ωd=ωn1ζ2=ωn10.032=0.99955(ωn). Therefore in the above we can just replace ωd by ωn with very good approximation, hence we now obtainz(t)=Fk|D|eζωnt[cosϕcosωnt+1ωn(ζωncosϕωsinϕ)sinωnt]+Fk|D|cos(ωtϕ)=Fk|D|eζωnt[cosϕcosωnt(ζcosϕ+ωωnsinϕ)sinωnt]+Fk|D|cos(ωtϕ)

This is the amplitude. In the above |D|=1(1(ωωn)2)2+(2ζ(ωωn))2, and ϕ=tan12ζωωn1(ωωn)2. The transient solution usually goes away after 5 or 6 cycles. Hence let us assume that the start up time takes 6×2πωn= 6×2πkm=6×2π1.2135×106450=0.72597 seconds. Or 1 second at worst.

Therefore we can now plot the amplitude for t=0 to t=1 second in increments of 0.1 second, and each time advance, we can increment ω from 0 to 60π in linear fashion, hence each 0.1 second we update ω by an amount 6π. After 1 second has passed, the system is assumed to be in steady state, and then we keep ω fixed at 60π rad/sec. This is a plot showing z(t) for t=0 to 2 seconds given the above method of changing ω

To avoid going over 10mm, this means we have to avoid the case of r=1 or ω=ωn. When I first just incremented ωn such that r=1 was not avoided, resonance caused the amplitude to go over 10mm as given in this plot. The transient solution itself stayed just below 10mm but the steady state solution went over 10mm due to resonance

pict

2.6.3.3 Part(c)

To insure that the amplitude does not go over 10mm, we need to add mass to the generator. Maximum amplitude is given by Fk12ζ=20×1031.2135×10612(0.03)=0.27469 meter  or 274mm

So to insure maximum does not exceed 10mm , solve for new k from 0.01=20×103kn12(0.03), hence kn=3.3333×107. Since ωn=51.929=knmn then new mass is mn=3.3333×10751.9292=12361 kg using these values, the above plot now are redone. This is the result

pict

We see that now the maximum displacement remained below 10 mm.

2.6.4 Problem 3

   2.6.4.1 part(a)
   2.6.4.2 Part(b)
   2.6.4.3 Part(c)

pict

Let ε=50mm=0.05m be the distance of the unbalance mass m. Let M=80kg be the mass of the motor. The equation of motion is given by(M+m)y+cy+ky=mεΩ2sin(Ωt)y+2ζωny+ωn2y=mm+MεΩ2Re(1ieiΩt)

Where ωn=km+M and ζ=c2(M+m)ωn. Let y=Re(YieiΩt). This leads toY=mm+MεΩ2ωn2Ω2+2iζωnΩ

Since static deflection is 40mm, then (M+m)gk=0.04k=(M+m)g0.04

But ωn2=km+M=(M+m)g0.04(M+m)=g0.04, hence ωn=9.810.04=15.66 rad/sec or 2.492 Hz.

2.6.4.1 part(a)

Since at steady state the displacement is 10 mm, then Ω=2π14560=15.184  or 2.4167 Hz hencey=Re(YieiΩt)=Re(εmm+Mr2(1r2+2iζr)ei(Ωtπ2))=εmr2m+M1((1r2)2+(2ζr)2)Re(eiϕei(Ωtπ2))

Where ϕ=tan1(2ζr1r2). r=Ωωn=15.18415.66=0.9696 hence the above becomes, at steady state0.01=(0.05)mm+800.96962(10.96962)2+(2ζ0.9696)2Re(ei(15.184 tπ2ϕ))=(0.05)mm+800.96962(10.96962)2+(2ζ0.9696)2sin(15.184 tϕ)

We are now told that at Ω=15.184 and when Ωt=750 then the displacement is zero, hence0=(0.05)mm+800.96962(10.96962)2+(2ζ0.9696)2sin(750ϕ)

orsin(750ϕ)=0750ϕ=0ϕ=750

Since ϕ=tan1(2ζr1r2) then 75(π180)=tan1(2ζ0.969610.96962)

Hencetan1(2ζ0.969610.96962)=1.30902ζ0.969610.96962=tan(1.3090)2ζ0.969610.96962=3.7321

Hence ζ=0.11523

2.6.4.2 Part(b)

From Eq ??0.01=(0.05)mm+800.96962(10.96962)2+(2ζ0.9696)2sin(15.184 tϕ)

The maximum amplitude is when0.01=(0.05)mm+800.96962(10.96962)2+(2ζ0.9696)2

But ζ=0.11523, hence we now solve for m0.01=(0.05)mm+800.96962(10.96962)2+(2(0.11523)0.9696)2 Hence m=4.1 kg

Hence εm=(0.05)(4.1)=0.20 kg meter

2.6.4.3 Part(c)

since

y=εmr2m+M1((1r2)2+(2ζr)2)Re(ei(Ωtπ2ϕ))

As Ω becomes much larger than ωn then (1r2)2r4 . Now dividing numerator and denominator by r2 givesy=εmm+M1(r4+(2ζr)2)r4sin(Ωtϕ)=εmm+M1(1+4ζ2r2)sin(Ωtϕ)

as r becomes large then 4ζ2r20 henceyεmm+Msin(Ωtϕ)

The smallest possible amplitude is|y|=0.204.1+80=2.3781×103 meter

or|y|=2.38 mm

2.6.5 problem 4

   2.6.5.1 Part(a)
   2.6.5.2 Part(b)
   2.6.5.3 Part(c)

pict

2.6.5.1 Part(a)

(note: total mass of system includes the small unbalanced masses) Since static deflection is 8.5mm, then Mgk=0.0085k=Mg0.0085

But ωn2=kM=Mg0.0085M=g0.0085, hence ωn=9.810.0085=33.972 rad/sec or 5.4068 Hz

2.6.5.2 Part(b)

The equation of motion is (angle Ω is now measured from horizontal, anti-clock wise positive)My+cy=2mεΩ2sin(Ωt)=Re(1i2mεΩ2ei(Ωt))

Let y(t)=Re(1iYeiΩt) hence y(t)=Re(YΩeiΩt),y(t)=Re(iYΩ2eiΩt), hence the above becomesRe(iYΩ2eiΩt)+cMRe(YΩeiΩt)=Re(1i2mεΩ2MeiΩt)Re((iΩ2+cΩM)YeiΩt)=Re(1i2mεΩ2MeiΩt)[iΩ2+cΩM]Y=1i2mεΩ2MY=1i2mεΩ2MiΩ2+cΩM=2mεΩ2icΩMΩ2

Henceyss(t)=Re(1iYei(Ωt))=Re(1i2mεΩ2icΩMΩ2ei(Ωt))

Now we are told when Ωt=π2 (upright position) then y=0(since it passes static equilibrium). At this moment Ω=2π90060=94.248 rad/sec, At this moment the centripetal forces equal the damping force downwards (since the mass was moving upwards). Hence mεΩ2=cy(t)

But from above we found that y(t)=Re(2mεΩ2icΩMΩ2ΩeiΩt)=Re((0.5)94.2482ic(94.248)200(94.248)294.248eiπ2)=Re(8.3718×10594.248ic1.7765×106eiπ2)

HencemεΩ2=c|y(t)|(0.5)94.2482=c8.3718×105(94.248c)2+(1.7765×106)24441.3=8.3718×105c8882.7c2+3.1560×1012

Solving numerically for c givesc=1.0882×104 N second per meter

2.6.5.3 Part(c)

When Ω=(2π100060)=104.72 rad/sec or 16.667 Hz. Fromy=Re(1i2mεΩ2icΩMΩ2ei(Ωt))=Re(2(0.5)(104.72)2i(1.0882×104)104.72200(104.72)2ei(104.72tπ2))=Re(10966.i1.1396×1062.1933×106ei(104.72tπ2))|y|=4.4 mm

2.6.6 Key solution for HW 5

PDF