calculation notebook in Mathematica appendix.nb
The following diagram shows the calculated aerodynamic dimensions of the wing using the three views.
The wing area S is the mean of the root chord length and the wing tip chord multiplied by the wing span b, therefore \begin{align*} S &= \left ( \frac{c_{r}+c_{t}}{2} \right ) b\\ &= \left ( \frac{25+12}{2} \right ) 150\\ &= \SI{2775}{\square \ft } \end{align*}
The aspect ratio is \mathcal{A} = \frac{b^2}{S} = \frac{150^2}{2775} = 8.108
Now equation (C3.3) was used since x is known \begin{align*} \frac{x}{\bar{c}} &= \frac{(1+2\lambda )(1+\lambda )}{8(1+\lambda +\lambda ^{2})} \mathcal{A}\tan (\Lambda _0) \\ \bar{c} &= \left (\frac{x}{\mathcal{A}\tan (\Lambda _0)}\right ) \frac{8(1+\lambda +\lambda ^2)}{(1+2\lambda )(1+\lambda )}\\ &= \frac{16.148}{ 8.108 \tan (\SI{26}{\degree }) } \frac{8(1+0.48+0.48^2)}{(1 + 2 \times 0.48) (1+0.48)}\\ &=\SI{19.2613}{\ft } \end{align*}
This value for \bar{c} was verified using figure C.2 on page 261 based on the use of \bar{c} = \frac{2}{3} c_{r} \frac{1+\lambda +\lambda ^{2}}{1+\lambda }
The location of mean aerodynamic center on the full wing is given by the coordinates \left (\bar{x},\bar{y},\bar{z}\right ) in the local frame of reference. For the full wing \bar{y}=0
To obtain \bar{z}, (C.1,4) in appendix C was used\begin{equation} \bar{z} = \frac{2}{C_L S} \int _{0}^{\frac{b}{2}} C_{L_{\alpha }}c z\, dy\tag{C.1,4} \end{equation}
This section is extra as it finds the \{\bar{x},\bar{y},\bar{z}\} for half wing, and not the full wing as the problems asks for. This was done to practice the use of appendix C integrals.
In finding \{\bar{x},\bar{y},\bar{z}\} , equations (C.1,2,3,4) in appendix C are used. The expression for c in these integrals is given by c(y) = \frac{2s}{( 1+\lambda ) b}\left (1- \frac{2(1-\lambda )}{b} y \right )
Where x=\left (\frac{1}{4}\right )c + y\tan (\Gamma ) as seen in the above diagram. substituting these in the above integral results in \bar{x}=\frac{2}{S}\int _{0}^{\frac{b}{2}}\frac{2s}{\left ( 1+\lambda \right ) b}\left ( 1-\frac{2\left ( 1-\lambda \right ) }{b}y\right ) \left ( \frac{1}{4}\left ( \frac{2s}{\left ( 1+\lambda \right ) b}\left ( 1-\frac{2\left ( 1-\lambda \right ) }{b}y\right ) \right ) +y\tan \left ( \Gamma \right ) \right )\,dy
Substituting numerical values for all the variables above gives \bar{y}=\SI{33.108}{\ft }
And finally for \bar{z} \bar{z}=\frac{2}{S}\int _{0}^{\frac{b}{2}}cz\,dy
From the above diagram (not drawn to scale) h_{n}=\frac{9.8151}{19.261}=0.50958
The expression for C_{m_{\alpha }} in the first equation above is given by \begin{equation} C_{m_{\alpha }}=a_{wb}\left ( h-h_{n_{wb}}\right ) -a_{t}V_{H}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) +\frac{\partial C_{m_{p}}}{\partial \alpha } \tag{1} \end{equation}
The problem asks to show that these two expression are the same. Starting from (2) in order to show it can be rewritten as (1). For this purpose, the following two definitions are used\begin{align} a & =a_{wb}\left ( 1+\frac{a_{t}}{a_{wb}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ) \tag{3}\\ \overline{V}_{H} & =\frac{\bar{l}_{t}}{\bar{c}}\frac{S_{t}}{S}\nonumber \end{align}
Since \bar{l}_{t}=l_{t}+\left ( h-h_{n_{wb}}\right ) \bar{c} the above becomes\begin{align} \overline{V}_{H} & =\frac{l_{t}+\left ( h-h_{n_{wb}}\right ) \bar{c}}{\bar{c}}\frac{S_{t}}{S}\nonumber \\ & =\frac{l_{t}}{\bar{c}}\frac{S_{t}}{S}+\left ( h-h_{n_{wb}}\right ) \frac{S_{t}}{S}\tag{4} \end{align}
Substituting Eqs (3,4) into Eq (2) gives\begin{align*} C_{m_{\alpha }} & =a_{wb}\left ( 1+\frac{a_{t}}{a_{wb}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ) \left ( h-h_{n_{wb}}\right ) -a_{t}\left [ \frac{l_{t}}{\bar{c}}\frac{S_{t}}{S}+\left ( h-h_{n_{wb}}\right ) \frac{S_{t}}{S}\right ] \left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) +\frac{\partial C_{m_{p}}}{\partial \alpha }\\ & =\left ( a_{wb}+a_{t}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ) \left ( h-h_{n_{wb}}\right ) -\left [ a_{t}\frac{l_{t}}{\bar{c}}\frac{S_{t}}{S}+a_{t}\left ( h-h_{n_{wb}}\right ) \frac{S_{t}}{S}\right ] \left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) +\frac{\partial C_{m_{p}}}{\partial \alpha }\\ & =a_{wb}\left ( h-h_{n_{wb}}\right ) +\overbrace{a_{t}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \left ( h-h_{n_{wb}}\right ) }-a_{t}\frac{l_{t}}{\bar{c}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) -\overbrace{a_{t}\left ( h-h_{n_{wb}}\right ) \frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) }+\frac{\partial C_{m_{p}}}{\partial \alpha } \end{align*}
The second term and the fourth term in the above cancel each others resulting in C_{m_{\alpha }}=a_{wb}\left ( h-h_{n_{wb}}\right ) -a_{t}\overset{V_{H}}{\overbrace{\frac{l_{t}}{\bar{c}}\frac{S_{t}}{S}}}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) +\frac{\partial C_{m_{p}}}{\partial \alpha }
C_{m_{0}} is given by (2.3,22) on page 32 of the textbook. \begin{equation} C_{m_{0}}=C_{m_{ac_{wb}}}+a_{t}\bar{V}_{H}\left ( \epsilon _{0}+i_{t}\right ) \left [ 1-\frac{a_{t}}{a}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ] \tag{0} \end{equation}
And\begin{align*} a &= a_{wb}\left ( 1+\frac{a_{t}}{a_{wb}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ) \\ & =0.077\left ( 1+\frac{0.064}{0.077}\frac{0.0342}{0.139}\left ( 1-0.3\right ) \right ) \\ & = \SI{0.08802}{\per \deg } \end{align*}
Using the numerical values given by (0) the above becomes \begin{align} C_{m_{0}} & =-0.018+0.064\left ( 0.6122\right ) \left ( 0.72+i_{t}\right ) \left ( 1-\frac{0.064}{0.08802}\frac{0.0342}{0.139}\left ( 1-0.3\right ) \right ) \nonumber \\ & =0.03427\,i_{t}+0.006677 \tag{1} \end{align}
Hence\begin{align*} C_{m_{0}} & >0\\ 0.03427\,i_{t}+0.006677\, & >0\\ i_{t} & >\frac{-0.006677}{0.03427}\\ & >\SI{-0.19484}{\degree } \end{align*}
C_{m_{\alpha }} is given by C_{m_{\alpha }}=a\left ( h-h_{n_{wb}}\right ) -a_{t}\overline{V}_{H}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) +\overset{0}{\overbrace{\frac{\partial C_{mp}}{\partial \alpha }}}
Therefore\begin{equation} C_{m_{\alpha }}=0.08802\,h-0.04943 \tag{2} \end{equation}
C_{m}=C_{m_{0}}+C_{m_{\alpha }}\alpha
using a=\SI{0.08802}{\degree } which was found from part (a), the angle of attack at trim \alpha _{trim} is now found \alpha _{trim}=\frac{\left ( C_{L}\right )_{trim}}{a}=\frac{0.2761}{0.08802}=\SI{3.1367}{\degree }
Solving for i_{t} as a function of h gives \begin{align*} i_{t} & =\frac{0.1484-0.2761\,h}{0.0343}\\ & =4.3294-8.0563\,h \end{align*}
The following is a plot in a small region around i_{t}=\SI{-0.19}{\degree } and h=0.56
For static stability, i_{t}>\SI{-0.19}{\degree } and h<0.562 as was obtained above. This is the value of the above line to the left of the shown small point and above the point, which is the limit of static stability.
The aspect ratio is (SI units are used) \mathcal{A=}\frac{b^{2}}{S}=\frac{50.29^{2}}{353}=7.1645
For this part, figure B.1-2 on page 322 was used. This figure is shown below
a_{w}=C_{L_{w_{\alpha }}}=\frac{\partial C_{L_{w}}}{\partial \alpha }
The half chord sweep angle is \Lambda _{\frac{1}{2}}=\SI{22}{\degree }. The problem asks to use the expression in the figure inset to find C_{L_{\alpha }} \begin{align*} \frac{C_{L_{\alpha }}}{\mathcal{A}} & =\frac{2\pi }{2+\sqrt{\frac{\mathcal{A}^{2}\beta ^{2}}{\kappa ^{2}}\left ( 1+\frac{\tan \left ( \Lambda _{\frac{1}{2}}\right ) ^{2}}{\beta ^{2}}\right ) +4}}\\ \frac{C_{L_{\alpha }}}{7.1645} & =\frac{2\pi }{2+\sqrt{\frac{\left ( 7.1645^{2}\right ) \left ( 1^{2}\right ) }{1^{2}}\left ( 1+\frac{\tan \left ( 22^{0}\right ) ^{2}}{1^{2}}\right ) +4}}\\ & =0.63247 \end{align*}
Hence\begin{align*} C_{L_{\alpha }} & = 7.165 \times 0.633\\ & =\SI{4.531}{\per \radian }\\ & =\SI{0.079}{\per \deg } \end{align*}
The angle C_{L} makes with the horizontal is \arctan (4.531) = \SI{1.354}{\radian } = \SI{77.556}{\degree }
Therefore a_{w}=\SI{4.531}{\per \radian }
The lift curve slope of the aircraft a is given by\begin{equation} a=a_{wb}\left ( 1+\frac{a_{t}}{a_{wb}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right ) \right ) \tag{1} \end{equation}
From Eq (1) we find\begin{align*} a &= 0.079 \left ( 1 + \left (\frac{0.068}{0.079}\right ) \left (\frac{80.83}{353}\right ) (1-0.403) \right ) \\ &=\SI{0.0883}{\per \deg } \\ &=\SI{5.059}{\per \radian } \end{align*}
C_{m_{\alpha }}=a\left ( h-h_{n_{wb}}\right ) -a_{t}\frac{\bar{l}_{t}}{\bar{c}}\frac{S_{t}}{S}\left ( 1-\frac{\partial \epsilon }{\partial \alpha }\right )
Since C_{m_{\alpha }}<0 then the airplane is statically stable.
From Fig 2.29, \frac{\partial C_{m}}{\partial \delta _{e}} can be estimated using C_{m}=0.25 and the corresponding line for \delta _{e}=\SI{0}{\degree } and using C_{m}=0.125 and its corresponding line for \delta _{e}=\SI{5}{\degree }. This gives \begin{align*} \frac{dC_{m}}{d\delta _{e}} & =\frac{0.25-0.125}{-0.50}\\ C_{m_{\delta _{e}}} & =\SI{-0.025}{\per \deg } \end{align*}
In solving for h_{n}, figure 2.30 was used. The slope for the h=0.35 line is -\frac{8}{0.78}=-10.256 and the slope for the h=0.25 line is -\frac{8}{0.6}=-13.333. Using \begin{equation} \left ( \frac{d\delta _{e}}{dC_{L}}\right )_{trim}=-\frac{C_{L_{\alpha }}}{\Delta }\left ( h-h_{n}\right ) \tag{1} \end{equation}
From (2) \frac{C_{L_{\alpha }}}{\Delta }=\frac{10.256}{\left ( 0.35-h_{n}\right ) }, substituting this in (3) gives\begin{align*} -13.333 & =-\frac{10.256}{\left ( 0.35-h_{n}\right ) }\left (0.25-h_{n}\right ) \\ -12.25\left ( 0.35-h_{n}\right ) & =-9.494\left (0.25-h_{n}\right ) \\ h_{n} & =0.6833 \end{align*}
\allowbreak c_{m_{\alpha }} at h=0.3 is now found. Since c_{m_{\alpha }}=a\left ( h-h_{n}\right )
c_{m_{\alpha }}<0 indicates static stability.
C_{L}=\frac{L}{\frac{1}{2}\rho V^{2}S} and at trim L=mg. Using \rho =\SI{1.225}{\kg \per \meter \cubed } and S=\SI{16.21}{\meter \squared } Values for C_{L} for the different V_{E} values given in the table and the corresponding mass are calculated and plotted against the angle i_{t}
The three segments are first fitted each to a straight line giving the following plot. The fitted straight lines found by fitting3 are \{-3.78307+5.3984x,-4.02058+9.2621x,-3.76524+12.6932x\} where y=i_{t}\approx -3.85 is the intercept angle in degrees where C_{L}=0 for all three lines
It was not clear if one should use the speed effect here and plot \frac{di_{t}}{dV_{trim}} against h to find the intersection or to use slope given by \frac{di_{t}}{d_{C_{L_{trim}}}} against h to find the intersection on the x-axis in order to determine h_{n}.
The second approach is used below since that is what figure 2.31 used which was referred to in the problem above. Therefore, the slope of each of the above lines is found for each h. This results in the following table
slope | h meter (c.g. measured from tip of aircraft) |
5.4 | 2.385 |
9.26 | 2.205 |
12.69 | 2.043 |
The data above gives three points. They are plotted and the intersection with h axis is found. This intersection is h_{n}. Below is the plot of the data in the above table
From the above diagram \begin{align*} h_{n} & =2.65 \hspace{2pt}\text{meter}\\ & =265 \hspace{2pt}\text{cm}\\ & =8.694 \hspace{2pt}\text{ft} \end{align*}