\[{\displaystyle \sum \limits _{i}}{\displaystyle \sum \limits _{j}} a_{ij}u_{i}u_{j}+{\displaystyle \sum \limits _{i}} b_{i}u_{i}+c \] For example, \(x_{1}^{2}+9x_{1}x_{2}+14x_{2}^{2}\) becomes \begin{align*} x_{1}^{2}+9x_{1}x_{2}+14x_{2}^{2} & =a_{11}x_{1}x_{1}+a_{21}x_{2}x_{1}+a_{12}x_{1}x_{2}+a_{22}x_{2}x_{2}+b_{1}x_{1}+b_{2}x_{2}+c\\ & =a_{11}x_{1}^{2}+a_{21}x_{2}x_{1}+a_{12}x_{1}x_{2}+a_{22}x_{2}^{2}+b_{1}x_{1}+b_{2}x_{2}+c \end{align*}
comparing both sides, we see that by setting \(a_{11}=1,a_{21}=\frac{9}{2},a_{21}=\frac{9}{2},a_{22}=14\) and by setting \(b_{1}=0,b_{2}=0\) and \(c=0\) we can write it in that form. Hence it is quadratic and \[ A= \begin{pmatrix} 1 & \frac{9}{2}\\ \frac{9}{2} & 14 \end{pmatrix} ,b=\begin{pmatrix} 0 & 0 \end{pmatrix} \] Therefore \begin{align*} x_{1}^{2}+9x_{1}x_{2}+14x_{2}^{2} & =x^{T}Ax+b^{T}x+c\\ & =\begin{pmatrix} x_{1} & x_{2}\end{pmatrix}\begin{pmatrix} 1 & \frac{9}{2}\\ \frac{9}{2} & 14 \end{pmatrix}\begin{pmatrix} x_{1}\\ x_{2}\end{pmatrix} +\begin{pmatrix} 0 & 0 \end{pmatrix}\begin{pmatrix} x_{1}\\ x_{2}\end{pmatrix} +0 \end{align*}
Since we are able to write \(x_{1}^{2}+9x_{1}x_{2}+14x_{2}^{2}=x^{T}Ax+b^{T}x+c\) it is quadratic. Notice that the \(A\) matrix is always symmetric.