Consider the equation xy^{\prime \prime }+\left ( c-x\right ) y^{\prime }-ay=0. Identify a regular singular point and find two series solutions around this point. Test the solutions for convergence.
Solution
Writing the ODE as y^{\prime \prime }+A\left ( x\right ) y^{\prime }+B\left ( x\right ) y=0
The above shows that x_{0}=0 is a singularity point for both A\left ( x\right ) and B\left ( x\right ) . Examining A\left ( x\right ) and B\left ( x\right ) to determine what type of singular point it is \lim _{x\rightarrow x_{0}}\left ( x-x_{0}\right ) A\left ( x\right ) =\lim _{x\rightarrow 0}x\frac{\left ( c-x\right ) }{x}=\lim _{x\rightarrow 0}\left ( c-x\right ) =c
Therefore x_{0}=0 is a regular singular point for the ODE.
Assuming the solution is Frobenius series gives\begin{align*} y\left ( x\right ) & =x^{r}\sum _{n=0}^{\infty }C_{n}\left ( x-x_{0}\right ) ^{n}\qquad C_{0}\neq 0\\ & =x^{r}\sum _{n=0}^{\infty }C_{n}x^{n}\\ & =\sum _{n=0}^{\infty }C_{n}x^{n+r} \end{align*}
Therefore\begin{align*} y^{\prime } & =\sum _{n=0}^{\infty }\left ( n+r\right ) C_{n}x^{n+r-1}\\ y^{\prime \prime } & =\sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) C_{n}x^{n+r-2} \end{align*}
Substituting the above in the original ODE xy^{\prime \prime }+\left ( c-x\right ) y^{\prime }-ay=0 gives\begin{align*} x\sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) C_{n}x^{n+r-2}+\left ( c-x\right ) \sum _{n=0}^{\infty }\left ( n+r\right ) C_{n}x^{n+r-1}-a\sum _{n=0}^{\infty }C_{n}x^{n+r} & =0\\ \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) c_{n}x^{n+r-1}+c\sum _{n=0}^{\infty }\left ( n+r\right ) C_{n}x^{n+r-1}-x\sum _{n=0}^{\infty }\left ( n+r\right ) C_{n}x^{n+r-1}-\sum _{n=0}^{\infty }aC_{n}x^{n+r} & =0\\ \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) C_{n}x^{n+r-1}+\sum _{n=0}^{\infty }c\left ( n+r\right ) C_{n}x^{n+r-1}-\sum _{n=0}^{\infty }\left ( n+r\right ) C_{n}x^{n+r}-\sum _{n=0}^{\infty }aC_{n}x^{n+r} & =0\\ \sum _{n=0}^{\infty }\left ( \left ( n+r\right ) \left ( n+r-1\right ) +c\left ( n+r\right ) \right ) C_{n}x^{n+r-1}-\sum _{n=0}^{\infty }\left ( \left ( n+r\right ) +a\right ) C_{n}x^{n+r} & =0 \end{align*}
Since all powers of x have to be the same, adjusting indices and exponents gives (where in the second sum above, the outside index n is increased by 1 and n inside the sum is decreased by 1)\begin{equation} \sum _{n=0}^{\infty }\left ( \left ( n+r\right ) \left ( n+r-1\right ) +c\left ( n+r\right ) \right ) C_{n}x^{n+r-1}-\sum _{n=1}^{\infty }\left ( \left ( n-1+r\right ) +a\right ) C_{n-1}x^{n+r-1}=0 \tag{1} \end{equation}
The roots are \begin{align*} r_{1} & =1-c\\ r_{2} & =0 \end{align*}
Assuming that r_{2}-r_{1} is not an integer, in other words, assuming 1-c is not an integer (problem did not say), then In this case, two linearly independent solutions can be constructed directly. The first is associated with r_{1}=1-c and the second is associated with r_{2}=0. These solutions are\begin{align*} y_{1}\left ( x\right ) & =\sum _{n=0}^{\infty }C_{n}x^{n+1-c}\qquad C_{0}\neq 0\\ y_{2}\left ( x\right ) & =\sum _{n=0}^{\infty }D_{n}x^{n}\qquad D_{0}\neq 0 \end{align*}
The coefficients are not the same in each solution. For the first one C_{n} is used and for the second D_{n} is used.
The solution y_{1}\left ( x\right ) associated with r_{1}=1-c is now found. From (1), and replacing r by 1-c gives\begin{align*} \sum _{n=0}^{\infty }\left ( \left ( n+1-c\right ) \left ( n+1-c-1\right ) +c\left ( n+1-c\right ) \right ) C_{n}x^{n+1-c-1}-\sum _{n=1}^{\infty }\left ( \left ( n-1+1-c\right ) +a\right ) C_{n-1}x^{n+1-c-1} & =0\\ \sum _{n=0}^{\infty }\left ( \left ( n+1-c\right ) \left ( n-c\right ) +c\left ( n+1-c\right ) \right ) C_{n}x^{n-c}-\sum _{n=1}^{\infty }\left ( \left ( n-c\right ) +a\right ) C_{n-1}x^{n-c} & =0\\ \sum _{n=0}^{\infty }n\left ( n-c+1\right ) C_{n}x^{n-c}-\sum _{n=1}^{\infty }\left ( \left ( n-c\right ) +a\right ) C_{n-1}x^{n-c} & =0 \end{align*}
For n>0 the above gives the recursive relation (n=0 is not used, since it was used to find r). For n>0 the last equation above gives\begin{align*} n\left ( n-c+1\right ) C_{n}-\left ( \left ( n-c\right ) +a\right ) C_{n-1} & =0\\ C_{n} & =\frac{\left ( \left ( n-c\right ) +a\right ) }{n\left ( n-c+1\right ) }C_{n-1} \end{align*}
Few terms are generated to see the pattern. For n=1 C_{1}=\frac{\left ( 1-c+a\right ) }{1\left ( 1-c+1\right ) }C_{0}=\frac{\left ( 1-c+a\right ) }{\left ( 2-c\right ) }C_{0}
For n=3\begin{align*} C_{3} & =\frac{\left ( 3-c+a\right ) }{3\left ( 3-c+1\right ) }C_{2}\\ & =\frac{\left ( 3-c+a\right ) }{3\left ( 4-c\right ) }\frac{\left ( 2-c+a\right ) }{2\left ( 3-c\right ) }\frac{\left ( 1-c+a\right ) }{\left ( 2-c\right ) }C_{0} \end{align*}
And so on. The pattern for general term is \begin{align*} C_{n} & =\frac{\left ( \left ( n-c\right ) +a\right ) }{n\left ( n-c+1\right ) }\cdot \cdot \cdot \frac{\left ( 3-c+a\right ) }{3\left ( 3-c+1\right ) }\frac{\left ( 2-c+a\right ) }{2\left ( 2-c+1\right ) }\frac{\left ( 1-c+a\right ) }{1\left ( 1-c+1\right ) }C_{0}\\ & ={\displaystyle \prod \limits _{m=1}^{n}} \frac{\left ( \left ( m-c\right ) +a\right ) }{m\left ( n-c+1\right ) } \end{align*}
Therefore the solution associated with r_{1}=1-c is\begin{align*} y_{1}\left ( x\right ) & =\sum _{n=0}^{\infty }C_{n}x^{n+r}\\ & =\sum _{n=0}^{\infty }C_{n}x^{n+1-c}\\ & =C_{0}x^{1-c}+C_{1}x^{2-c}+C_{2}x^{3-c}+\cdots \end{align*}
Using results found above, and looking at few terms gives the first solution as y_{1}\left ( x\right ) =C_{0}x^{1-c}\left ( 1+\frac{\left ( 1-c+a\right ) }{\left ( 2-c\right ) }x+\frac{1}{2}\frac{\left ( 2-c+a\right ) }{\left ( 3-c\right ) }\frac{\left ( 1-c+a\right ) }{\left ( 2-c\right ) }x^{2}+\frac{1}{6}\frac{\left ( 3-c+a\right ) }{\left ( 4-c\right ) }\frac{\left ( 2-c+a\right ) }{\left ( 3-c\right ) }\frac{\left ( 1-c+a\right ) }{\left ( 2-c\right ) }x^{3}+\cdots \right )
Few terms are now generated to see the pattern. For n=1 D_{1}=\frac{a}{c}D_{0}
For n=3\begin{align*} D_{3} & =\frac{3-1+a}{3c-3+9}D_{2}\\ & =\frac{2+a}{3\left ( c+2\right ) }\frac{1+a}{2\left ( c+1\right ) }\frac{a}{c}D_{0} \end{align*}
And so on. Hence the solution y_{2}\left ( x\right ) is\begin{align*} y_{2}\left ( x\right ) & =\sum _{n=0}^{\infty }D_{n}x^{n}\\ & =D_{0}+D_{1}x+D_{2}x^{2}+\cdots \end{align*}
Using result found above gives the second solution as y_{2}\left ( x\right ) =D_{0}\left ( 1+\frac{a}{c}x+\frac{1}{2}\frac{\left ( 1+a\right ) a}{c\left ( c+1\right ) }x^{2}+\frac{1}{6}\frac{a\left ( 1+a\right ) \left ( 2+a\right ) }{c\left ( c+2\right ) \left ( c+1\right ) }x^{3}+\cdots \right )
Where C_{0},D_{0} are the two constant of integration.
Testing for convergence. For y_{1}\left ( x\right ) solution, the general term from above was C_{n}x^{n}=\frac{\left ( \left ( n-c\right ) +a\right ) }{n\left ( n-c+1\right ) }C_{n-1}x^{n}
Therefore the series y_{1}\left ( x\right ) converges for all x.
Testing for convergence. For y_{2}\left ( x\right ) solution, the general term is D_{n}x^{n}=\frac{n-1+a}{cn-n+n^{2}}D_{n-1}x^{n}
Therefore the series y_{2}\left ( x\right ) also converges for all x. This means the solution y\left ( x\right ) =y_{1}\left ( x\right ) +y_{2}\left ( x\right ) found in (2) above also converges for all x.
The Sturm Liouville equation can be expressed as L\left [ u\left ( x\right ) \right ] =\lambda \rho \left ( x\right ) u\left ( x\right )
Solution
L=-\left ( p\frac{d^{2}}{dx^{2}}+p^{\prime }\frac{d}{dx}-q\right )
Looking at the first integral above, which is I_{1}=\int _{a}^{b}\left ( p\bar{v}\right ) \left ( \frac{d^{2}u}{dx^{2}}\right ) dx. The idea is to integrate this twice to move the second derivative from u to \bar{v}. Applying \int AdB=AB-\int BdA, where \begin{align*} A & \equiv p\bar{v}\\ dB & \equiv \frac{d^{2}u}{dx^{2}} \end{align*}
Hence\begin{align*} dA & =p\frac{d\bar{v}}{dx}+p^{\prime }\bar{v}\\ B & =\frac{du}{dx} \end{align*}
Therefore the integral I_{1} in (1) becomes\begin{align*} I_{1} & =\int _{a}^{b}p\bar{v}\frac{d^{2}}{dx^{2}}u\\ & =\left [ p\bar{v}\frac{du}{dx}\right ] _{a}^{b}-\int _{a}^{b}\frac{du}{dx}\left ( p\frac{d\bar{v}}{dx}+p^{\prime }\bar{v}\right ) dx \end{align*}
But \bar{v}\left ( a\right ) =0 and \bar{v}\left ( b\right ) =0, hence the boundary terms above vanish and simplifies to\begin{align} I_{1} & =-\int _{a}^{b}p\frac{du}{dx}\frac{d\bar{v}}{dx}+p^{\prime }\bar{v}\ \frac{du}{dx}dx\nonumber \\ & =-\int _{a}^{b}p\frac{du}{dx}\frac{d\bar{v}}{dx}dx-\int _{a}^{b}p^{\prime }\bar{v}\ \frac{du}{dx}dx \tag{2} \end{align}
Before integrating by parts a second time, putting the result of I_{1} back into (1) first simplifies the result. Substituting (2) into (1) gives\begin{align*} \int _{a}^{b}\bar{v}L\left [ u\right ] dx & =-I_{1}-\int _{a}^{b}\bar{v}p^{\prime }\frac{du}{dx}dx+\int _{a}^{b}q\bar{v}u\ dx\\ & =-\overset{I_{1}}{\overbrace{\left ( -\int _{a}^{b}p\frac{du}{dx}\frac{d\bar{v}}{dx}dx-\int _{a}^{b}p^{\prime }\bar{v}\ \frac{du}{dx}dx\right ) }}-\int _{a}^{b}\bar{v}p^{\prime }\frac{du}{dx}dx+\int _{a}^{b}q\bar{v}u\ dx\\ & =\int _{a}^{b}p\frac{du}{dx}\frac{d\bar{v}}{dx}dx+\int _{a}^{b}p^{\prime }\bar{v}\ \frac{du}{dx}dx-\int _{a}^{b}\bar{v}p^{\prime }\frac{du}{dx}dx+\int _{a}^{b}q\bar{v}u\ dx \end{align*}
The second and third terms above cancel and the result becomes\begin{equation} \int _{a}^{b}\bar{v}L\left [ u\right ] dx=\overset{I_{2}}{\overbrace{\int _{a}^{b}p\frac{du}{dx}\frac{d\bar{v}}{dx}dx}}+\int _{a}^{b}q\bar{v}u\ dx \tag{3} \end{equation}
Hence\begin{align*} dA & =p\frac{d^{2}\bar{v}}{dx^{2}}+p^{\prime }\frac{d\bar{v}}{dx}\\ B & =u \end{align*}
Therefore the integral I_{2} becomes I_{2}=\left [ p\frac{d\bar{v}}{dx}u\right ] _{a}^{b}-\int _{a}^{b}u\left ( p\frac{d^{2}\bar{v}}{dx^{2}}+p^{\prime }\frac{d\bar{v}}{dx}\right ) dx
But -\left ( p\frac{d^{2}\bar{v}}{dx^{2}}+p^{\prime }\frac{d\bar{v}}{dx}-q\bar{v}\right ) =L\left [ \bar{v}\right ] by definition, and the above becomes \int _{a}^{b}\bar{v}L\left [ u\right ] dx=\int _{a}^{b}uL\left [ \bar{v}\right ] dx
Solution
The point x_{0}=0 is a regular singular point. This is shown as follows.\begin{align*} \,\lim _{x\rightarrow x_{0}}\left ( x-x_{0}\right ) ^{2}\frac{1-\alpha ^{2}}{4x^{2}} & =\lim _{x\rightarrow 0}x^{2}\frac{1-\alpha ^{2}}{4x^{2}}\\ & =\lim _{x\rightarrow 0}\frac{1-\alpha ^{2}}{4}\\ & =\frac{1-\alpha ^{2}}{4} \end{align*}
Since the limit exist, then x_{0}=0 is a regular singular point. Assuming the solution is a Frobenius series given by y\left ( x\right ) =\sum _{n=0}^{\infty }c_{n}x^{n+r}\qquad c_{0}\neq 0
Substituting the above 2 expressions back into the original ODE gives\begin{align} 4x^{2}\left ( \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) c_{n}x^{n+r-2}\right ) +\left ( 1-\alpha ^{2}\right ) \left ( \sum _{n=0}^{\infty }c_{n}x^{n+r}\right ) & =0\nonumber \\ \sum _{n=0}^{\infty }4\left ( n+r\right ) \left ( n+r-1\right ) c_{n}x^{n+r}+\left ( 1-\alpha ^{2}\right ) \left ( \sum _{n=0}^{\infty }c_{n}x^{n+r}\right ) & =0\tag{1} \end{align}
Looking at n=0 first, in order to obtain the indicial equation gives\begin{align*} 4\left ( r\right ) \left ( r-1\right ) c_{0}+\left ( 1-\alpha ^{2}\right ) c_{0} & =0\\ c_{0}\left ( 4r^{2}-4r+\left ( 1-\alpha ^{2}\right ) \right ) & =0 \end{align*}
But c_{0}\neq 0, therefore r^{2}-r+\frac{\left ( 1-\alpha ^{2}\right ) }{4}=0
Hence r_{1}=\frac{1}{2}\left ( 1+\alpha \right ) and r_{2}=\frac{1}{2}\left ( 1-\alpha \right ) . Each one of these roots gives a solution. The difference is \begin{align*} r_{2}-r_{1} & =\frac{1}{2}\left ( 1+\alpha \right ) -\frac{1}{2}\left ( 1-\alpha \right ) \\ & =\alpha \end{align*}
Therefore, to use the same solution form y_{1}\left ( x\right ) =\sum _{n=0}^{\infty }c_{n}x^{n+r_{1}} and y_{2}\left ( x\right ) =\sum _{n=0}^{\infty }d_{n}x^{n+r_{2}} for each, it is assumed that \alpha is not an integer. In this case, the recursive relation for y_{1}\left ( x\right ) is found from (1) by using r=\frac{1}{2}\left ( 1+\alpha \right ) which results in \sum _{n=0}^{\infty }4\left ( n+\frac{1}{2}\left ( 1+\alpha \right ) \right ) \left ( n+\frac{1}{2}\left ( 1+\alpha \right ) -1\right ) c_{n}x^{n+\frac{1}{2}\left ( 1+\alpha \right ) }+\left ( 1-\alpha ^{2}\right ) \left ( \sum _{n=0}^{\infty }c_{n}x^{n+\frac{1}{2}\left ( 1+\alpha \right ) }\right ) =0
The above can be true for all n>0 only when c_{n}=0 for n>0. Therefore the solution is only the term with c_{0} y_{1}\left ( x\right ) =\sum _{n=0}^{\infty }c_{n}x^{n+r_{1}}=c_{0}x^{r_{1}}=c_{0}x^{\frac{1}{2}\left ( 1+\alpha \right ) }
The above is true for all n>0 only when c_{n}=0 for n>0. Therefore the solution is just the term with d_{0} y_{2}\left ( x\right ) =\sum _{n=0}^{\infty }d_{n}x^{n+r_{2}}=d_{0}x^{r_{2}}=d_{0}x^{\frac{1}{2}\left ( 1-\alpha \right ) }
When \alpha =0 then the ODE becomes 4x^{2}y^{\prime \prime }+y=0
Therefore the two solutions are not linearly independent. Let y_{20}\left ( x\right ) be the second solution. The Wronskian is\begin{equation} W\left ( x\right ) =\begin{vmatrix} y_{1} & y_{20}\\ y_{1}^{\prime } & y_{20}^{\prime }\end{vmatrix} =y_{1}y_{20}^{\prime }-y_{20}y_{1}^{\prime }\tag{1} \end{equation}
Since y_{1}=\sqrt{x} and y_{1}^{\prime }=\frac{1}{2}\frac{1}{\sqrt{x}} the above simplifies to\begin{align} y_{20}^{\prime }-y_{20}\frac{\frac{1}{2}\frac{1}{\sqrt{x}}}{\sqrt{x}} & =\frac{C}{\sqrt{x}}\nonumber \\ y_{20}^{\prime }-y_{20}\frac{1}{2x} & =\frac{C}{\sqrt{x}}\tag{2} \end{align}
But the above is linear first order ODE of the form Y^{\prime }+pY=q, therefore the standard integrating factor to use is I=e^{\int p\left ( x\right ) dx} which results in\begin{align*} I & =e^{\int \frac{-1}{2x}dx}\\ & =e^{-\frac{1}{2}\int \frac{1}{x}dx}\\ & =e^{-\frac{1}{2}\ln x}\\ & =\frac{1}{\sqrt{x}} \end{align*}
Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact differential \frac{d}{dx}\left ( y_{20}\frac{1}{\sqrt{x}}\right ) =\frac{C}{x}
Or\begin{equation} y_{20}=C_{1}\ln x\sqrt{x}+C_{2}\sqrt{x}\tag{3} \end{equation}
This method is called the reduction of order method. It does not require finding W\left ( x\right ) first. Let the second solution be \begin{equation} y_{20}=Y=v\left ( x\right ) y_{1}\left ( x\right ) \tag{4} \end{equation}
Since Y is a solution to the ODE 4x^{2}y^{\prime \prime }+y=0, then substituting the above equations back into the ODE 4x^{2}y^{\prime \prime }+y=0 gives\begin{align*} 4x^{2}\left ( v^{\prime \prime }y_{1}+2v^{\prime }y_{1}^{\prime }+vy_{1}^{\prime \prime }\right ) +vy_{1} & =0\\ v^{\prime \prime }\left ( 4x^{2}y_{1}\right ) +v^{\prime }\left ( 8x^{2}y_{1}^{\prime }\right ) +v\left ( \overset{0}{\overbrace{4x^{2}y_{1}^{\prime \prime }+y_{1}}}\right ) & =0 \end{align*}
But 4x^{2}y_{1}^{\prime \prime }+y_{1}=0 because y_{1} is a solution. The above simplifies to v^{\prime \prime }\left ( 4x^{2}y_{1}\right ) +v^{\prime }\left ( 8x^{2}y_{1}^{\prime }\right ) =0
This ODE is now easy to solve because the v\left ( x\right ) term is missing. Let w=v^{\prime } and the above first order ODE w^{\prime }+\frac{1}{x}w=0. This is linear in w. Hence using integrating factor I=e^{\int \frac{1}{x}dz}=x, this ODE becomes\begin{align*} \frac{d}{x}\left ( wx\right ) & =0\\ wx & =C\\ w & =\frac{C}{x} \end{align*}
Where C is constant of integration. Since v^{\prime }=w, then v^{\prime }=\frac{C_{1}}{x}. Now v\left ( x\right ) is found by integrating both sides v=C_{1}\ln x+C_{2}
Comparing the above to (3), shows it is the same solution. Both methods can be used, but reduction of order method is a more common method and it does not require finding the Wronskian first, although it is not hard to find by using Abel’s theorem.
The solutions we found in part (1) are\begin{align*} y_{1}\left ( x\right ) & =C_{1}x^{\frac{1}{2}\left ( 1+\alpha \right ) }\\ y_{2}\left ( x\right ) & =C_{2}x^{\frac{1}{2}\left ( 1-\alpha \right ) } \end{align*}
Therefore \lim _{\alpha \rightarrow 0}\frac{y_{1}-y_{2}}{\alpha }=\lim _{\alpha \rightarrow 0}\frac{C_{1}x^{\frac{1}{2}\left ( 1+\alpha \right ) }-C_{2}x^{\frac{1}{2}\left ( 1-\alpha \right ) }}{\alpha }
And\begin{align*} \frac{d}{d\alpha }\left ( x^{\frac{1}{2}\left ( 1-\alpha \right ) }\right ) & =\frac{d}{d\alpha }e^{\frac{1}{2}\left ( 1-\alpha \right ) \ln x}\\ & =\frac{d}{d\alpha }e^{\left ( \frac{1}{2}\ln x-\alpha \ln x\right ) }\\ & =-\ln xe^{\left ( \frac{1}{2}\ln x-\alpha \ln x\right ) } \end{align*}
Therefore (1) becomes\begin{align*} \lim _{\alpha \rightarrow 0}\frac{y_{1}-y_{2}}{\alpha } & =\lim _{\alpha \rightarrow 0}C_{1}\ln xe^{\left ( \frac{1}{2}\ln x+\alpha \ln x\right ) }+C_{2}\ln xe^{\left ( \frac{1}{2}\ln x-\alpha \ln x\right ) }\\ & =\ln x\left ( \lim _{\alpha \rightarrow 0}C_{1}e^{\left ( \frac{1}{2}\ln x+\alpha \ln x\right ) }+C_{2}e^{\left ( \frac{1}{2}\ln x-\alpha \ln x\right ) }\right ) \\ & =\ln x\left ( C_{1}e^{\frac{1}{2}\ln x}+C_{2}e^{\frac{1}{2}\ln x}\right ) \\ & =\ln x\left ( C_{1}\sqrt{x}+C_{2}\sqrt{x}\right ) \\ & =C\sqrt{x}\ln x \end{align*}
The above is the same as (3) found in part (2). Hence y_{20}\left ( x\right ) =\lim _{\alpha \rightarrow 0}\frac{y_{1}-y_{2}}{\alpha }