[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
34
Version 4.16.1 Dec 22 2018
ZIP file
1.
IntegrationUtilityFunctions.m
2.
PacletInfo.m
3.
Rubi.m
4.
RubiPackageTools.m
5.
ShowStepFormatting.m
6.
ShowStepRoutines.m
7.
init.m
8.
2.1 (c+d x)
m
(a+b (F
(
g (e+f x)))
n
)
p
.m
9.
2.2 (c+d x)
m
(F
(
g (e+f x)))
n
(a+b (F
(
g (e+f x)))
n
)
p
.m
10.
2.3 Miscellaneous exponentials.m
11.
3.1.1 (a+b log(c x
n
))
p
.m
12.
3.1.2 (d x)
m
(a+b log(c x
n
))
p
.m
13.
3.1.3 (d+e x
r
)
q
(a+b log(c x
n
))
p
.m
14.
3.1.4 (f x)
m
(d+e x
r
)
q
(a+b log(c x
n
))
p
.m
15.
3.1.5 u (a+b log(c x
n
))
p
.m
16.
3.2.1 (f+g x)
m
(A+B log(e ((a+b x) over (c+d x))
n
))
p
.m
17.
3.2.2 (f+g x)
m
(h+i x)
q
(A+B log(e ((a+b x) over (c+d x))
n
))
p
.m
18.
3.2.3 u log(e (f (a+b x)
p
(c+d x)
q
)
r
)
s
.m
19.
3.3 u (a+b log(c (d+e x)
n
))
p
.m
20.
3.4 u (a+b log(c (d+e x
m
)
n
))
p
.m
21.
3.5 Miscellaneous logarithms.m
22.
8.1 Error functions.m
23.
8.10 Bessel functions.m
24.
8.2 Fresnel integral functions.m
25.
8.3 Exponential integral functions.m
26.
8.4 Trig integral functions.m
27.
8.5 Hyperbolic integral functions.m
28.
8.6 Gamma functions.m
29.
8.7 Zeta function.m
30.
8.8 Polylogarithm function.m
31.
8.9 Product logarithm function.m
32.
9.1 Integrand simplification rules.m
33.
9.2 Derivative integration rules.m
34.
9.3 Piecewise linear functions.m
35.
9.4 Miscellaneous integration rules.m
36.
1.3.1 P(x)
p
.m
37.
1.3.2 P(x) Q(x)
p
.m
38.
1.3.3 Miscellaneous algebraic functions.m
39.
1.3.4 Normalizing algebraic functions.m
40.
4.1.0.1 (a sin)
m
(b trg)
n
.m
41.
4.1.0.2 (a trg)
m
(b tan)
n
.m
42.
4.1.0.3 (a csc)
m
(b sec)
n
.m
43.
4.1.1.1 (a+b sin)
n
.m
44.
4.1.1.2 (g cos)
p
(a+b sin)
m
.m
45.
4.1.1.3 (g tan)
p
(a+b sin)
m
.m
46.
4.1.10 (c+d x)
m
(a+b sin)
n
.m
47.
4.1.11 (e x)
m
(a+b x
n
)
p
sin.m
48.
4.1.12 (e x)
m
(a+b sin(c+d x
n
))
p
.m
49.
4.1.13 (d+e x)
m
sin(a+b x+c x
2
)
n
.m
50.
4.1.2.1 (a+b sin)
m
(c+d sin)
n
.m
51.
4.1.2.2 (g cos)
p
(a+b sin)
m
(c+d sin)
n
.m
52.
4.1.2.3 (g sin)
p
(a+b sin)
m
(c+d sin)
n
.m
53.
4.1.3.1 (a+b sin)
m
(c+d sin)
n
(A+B sin).m
54.
4.1.4.1 (a+b sin)
m
(A+B sin+C sin
2
).m
55.
4.1.4.2 (a+b sin)
m
(c+d sin)
n
(A+B sin+C sin
2
).m
56.
4.1.5 trig
m
(a cos+b sin)
n
.m
57.
4.1.6 (a+b cos+c sin)
n
.m
58.
4.1.7 (d trig)
m
(a+b (c sin)
n
)
p
.m
59.
4.1.8 trig
m
(a+b cos
p
+c sin
q
)
n
.m
60.
4.1.9 trig
m
(a+b sin
n
+c sin
(
2 n))
p
.m
61.
4.3.1.1 (a+b tan)
n
.m
62.
4.3.1.2 (d sec)
m
(a+b tan)
n
.m
63.
4.3.1.3 (d sin)
m
(a+b tan)
n
.m
64.
4.3.10 (c+d x)
m
(a+b tan)
n
.m
65.
4.3.11 (e x)
m
(a+b tan(c+d x
n
))
p
.m
66.
4.3.12 (d+e x)
m
tan(a+b x+c x
2
)
n
.m
67.
4.3.2.1 (a+b tan)
m
(c+d tan)
n
.m
68.
4.3.2.3 (g tan)
p
(a+b tan)
m
(c+d tan)
n
.m
69.
4.3.3.1 (a+b tan)
m
(c+d tan)
n
(A+B tan).m
70.
4.3.4.1 (a+b tan)
m
(A+B tan+C tan
2
).m
71.
4.3.4.2 (a+b tan)
m
(c+d tan)
n
(A+B tan+C tan
2
).m
72.
4.3.7 (d trig)
m
(a+b (c tan)
n
)
p
.m
73.
4.3.9 trig
m
(a+b tan
n
+c tan
(
2 n))
p
.m
74.
4.5.1.1 (a+b sec)
n
.m
75.
4.5.1.2 (d sec)
n
(a+b sec)
m
.m
76.
4.5.1.3 (d sin)
n
(a+b sec)
m
.m
77.
4.5.1.4 (d tan)
n
(a+b sec)
m
.m
78.
4.5.10 (c+d x)
m
(a+b sec)
n
.m
79.
4.5.11 (e x)
m
(a+b sec(c+d x
n
))
p
.m
80.
4.5.2.1 (a+b sec)
m
(c+d sec)
n
.m
81.
4.5.2.2 (g sec)
p
(a+b sec)
m
(c+d sec)
n
.m
82.
4.5.3.1 (a+b sec)
m
(d sec)
n
(A+B sec).m
83.
4.5.4.1 (a+b sec)
m
(A+B sec+C sec
2
).m
84.
4.5.4.2 (a+b sec)
m
(d sec)
n
(A+B sec+C sec
2
).m
85.
4.5.7 (d trig)
m
(a+b (c sec)
n
)
p
.m
86.
4.5.9 trig
m
(a+b sec
n
+c sec
(
2 n))
p
.m
87.
4.7.1 Sine normalization rules.m
88.
4.7.2 Tangent normalization rules.m
89.
4.7.3 Secant normalization rules.m
90.
4.7.4 (c trig)
m
(d trig)
n
.m
91.
4.7.5 Inert trig functions.m
92.
4.7.6 (c+d x)
m
trig(a+b x)
n
trig(a+b x)
p
.m
93.
4.7.7 F
(
c (a+b x)) trig(d+e x)
n
.m
94.
4.7.8 u trig(a+b log(c x
n
))
p
.m
95.
4.7.9 Active trig functions.m
96.
5.1.1 (a+b arcsin(c x))
n
.m
97.
5.1.2 (d x)
m
(a+b arcsin(c x))
n
.m
98.
5.1.3 (d+e x
2
)
p
(a+b arcsin(c x))
n
.m
99.
5.1.4 (f x)
m
(d+e x
2
)
p
(a+b arcsin(c x))
n
.m
100.
5.1.5 u (a+b arcsin(c x))
n
.m
101.
5.1.6 Miscellaneous inverse sine.m
102.
5.3.1 (a+b arctan(c x
n
))
p
.m
103.
5.3.2 (d x)
m
(a+b arctan(c x
n
))
p
.m
104.
5.3.3 (d+e x)
m
(a+b arctan(c x
n
))
p
.m
105.
5.3.4 u (a+b arctan(c x))
p
.m
106.
5.3.5 u (a+b arctan(c+d x))
p
.m
107.
5.3.6 Exponentials of inverse tangent.m
108.
5.3.7 Miscellaneous inverse tangent.m
109.
5.5.1 u (a+b arcsec(c x))
n
.m
110.
5.5.2 Miscellaneous inverse secant.m
111.
6.1.10 (c+d x)
m
(a+b sinh)
n
.m
112.
6.1.11 (e x)
m
(a+b x
n
)
p
sinh.m
113.
6.1.12 (e x)
m
(a+b sinh(c+d x
n
))
p
.m
114.
6.1.13 (d+e x)
m
sinh(a+b x+c x
2
)
n
.m
115.
6.3.10 (c+d x)
m
(a+b tanh)
n
.m
116.
6.3.11 (e x)
m
(a+b tanh(c+d x
n
))
p
.m
117.
6.3.12 (d+e x)
m
tanh(a+b x+c x
2
)
n
.m
118.
6.5.10 (c+d x)
m
(a+b sech)
n
.m
119.
6.5.11 (e x)
m
(a+b sech(c+d x
n
))
p
.m
120.
6.7.6 (c+d x)
m
hyper(a+b x)
n
hyper(a+b x)
p
.m
121.
6.7.7 F
(
c (a+b x)) hyper(d+e x)
n
.m
122.
6.7.8 u hyper(a+b log(c x
n
))
p
.m
123.
6.7.9 Active hyperbolic functions.m
124.
7.1.1 (a+b arcsinh(c x))
n
.m
125.
7.1.2 (d x)
m
(a+b arcsinh(c x))
n
.m
126.
7.1.3 (d+e x
2
)
p
(a+b arcsinh(c x))
n
.m
127.
7.1.4 (f x)
m
(d+e x
2
)
p
(a+b arcsinh(c x))
n
.m
128.
7.1.5 u (a+b arcsinh(c x))
n
.m
129.
7.1.6 Miscellaneous inverse hyperbolic sine.m
130.
7.2.1 (a+b arccosh(c x))
n
.m
131.
7.2.2 (d x)
m
(a+b arccosh(c x))
n
.m
132.
7.2.3 (d+e x
2
)
p
(a+b arccosh(c x))
n
.m
133.
7.2.4 (f x)
m
(d+e x
2
)
p
(a+b arccosh(c x))
n
.m
134.
7.2.5 u (a+b arccosh(c x))
n
.m
135.
7.2.6 Miscellaneous inverse hyperbolic cosine.m
136.
7.3.1 (a+b arctanh(c x
n
))
p
.m
137.
7.3.2 (d x)
m
(a+b arctanh(c x
n
))
p
.m
138.
7.3.3 (d+e x)
m
(a+b arctanh(c x
n
))
p
.m
139.
7.3.4 u (a+b arctanh(c x))
p
.m
140.
7.3.5 u (a+b arctanh(c+d x))
p
.m
141.
7.3.6 Exponentials of inverse hyperbolic tangent.m
142.
7.3.7 Miscellaneous inverse hyperbolic tangent.m
143.
7.5.1 u (a+b arcsech(c x))
n
.m
144.
7.5.2 Miscellaneous inverse hyperbolic secant.m
145.
1.1.1.1 (a+b x)
m
.m
146.
1.1.1.2 (a+b x)
m
(c+d x)
n
.m
147.
1.1.1.3 (a+b x)
m
(c+d x)
n
(e+f x)
p
.m
148.
1.1.1.4 (a+b x)
m
(c+d x)
n
(e+f x)
p
(g+h x)
q
.m
149.
1.1.1.5 P(x) (a+b x)
m
(c+d x)
n
.m
150.
1.1.1.6 P(x) (a+b x)
m
(c+d x)
n
(e+f x)
p
.m
151.
1.1.1.7 P(x) (a+b x)
m
(c+d x)
n
(e+f x)
p
(g+h x)
q
.m
152.
1.1.2.x P(x) (a+b x
2
)
p
.m
153.
1.1.2.y P(x) (c x)
m
(a+b x
2
)
p
.m
154.
1.1.3.1 (a+b x
n
)
p
.m
155.
1.1.3.2 (c x)
m
(a+b x
n
)
p
.m
156.
1.1.3.3 (a+b x
n
)
p
(c+d x
n
)
q
.m
157.
1.1.3.4 (e x)
m
(a+b x
n
)
p
(c+d x
n
)
q
.m
158.
1.1.3.5 (a+b x
n
)
p
(c+d x
n
)
q
(e+f x
n
)
r
.m
159.
1.1.3.6 (g x)
m
(a+b x
n
)
p
(c+d x
n
)
q
(e+f x
n
)
r
.m
160.
1.1.3.7 P(x) (a+b x
n
)
p
.m
161.
1.1.3.8 P(x) (c x)
m
(a+b x
n
)
p
.m
162.
1.1.4.1 (a x
j
+b x
n
)
p
.m
163.
1.1.4.2 (c x)
m
(a x
j
+b x
n
)
p
.m
164.
1.1.4.3 (e x)
m
(a x
j
+b x
k
)
p
(c+d x
n
)
q
.m
165.
1.1.4.4 P(x) (c x)
m
(a x
j
+b x
n
)
p
.m
166.
1.2.1.1 (a+b x+c x
2
)
p
.m
167.
1.2.1.2 (d+e x)
m
(a+b x+c x
2
)
p
.m
168.
1.2.1.3 (d+e x)
m
(f+g x) (a+b x+c x
2
)
p
.m
169.
1.2.1.4 (d+e x)
m
(f+g x)
n
(a+b x+c x
2
)
p
.m
170.
1.2.1.5 (a+b x+c x
2
)
p
(d+e x+f x
2
)
q
.m
171.
1.2.1.6 (g+h x)
m
(a+b x+c x
2
)
p
(d+e x+f x
2
)
q
.m
172.
1.2.1.7 (a+b x+c x
2
)
p
(d+e x+f x
2
)
q
(A+B x+C x
2
).m
173.
1.2.1.8 P(x) (a+b x+c x
2
)
p
.m
174.
1.2.1.9 P(x) (d+e x)
m
(a+b x+c x
2
)
p
.m
175.
1.2.2.1 (a+b x
2
+c x
4
)
p
.m
176.
1.2.2.2 (d x)
m
(a+b x
2
+c x
4
)
p
.m
177.
1.2.2.3 (d+e x
2
)
q
(a+b x
2
+c x
4
)
p
.m
178.
1.2.2.4 (f x)
m
(d+e x
2
)
q
(a+b x
2
+c x
4
)
p
.m
179.
1.2.2.5 P(x) (a+b x
2
+c x
4
)
p
.m
180.
1.2.2.6 P(x) (d x)
m
(a+b x
2
+c x
4
)
p
.m
181.
1.2.2.7 P(x) (d+e x
2
)
q
(a+b x
2
+c x
4
)
p
.m
182.
1.2.2.8 P(x) (d+e x)
q
(a+b x
2
+c x
4
)
p
.m
183.
1.2.3.1 (a+b x
n
+c x
(
2 n))
p
.m
184.
1.2.3.2 (d x)
m
(a+b x
n
+c x
(
2 n))
p
.m
185.
1.2.3.3 (d+e x
n
)
q
(a+b x
n
+c x
(
2 n))
p
.m
186.
1.2.3.4 (f x)
m
(d+e x
n
)
q
(a+b x
n
+c x
(
2 n))
p
.m
187.
1.2.3.5 P(x) (a+b x
n
+c x
(
2 n))
p
.m
188.
1.2.3.6 P(x) (d x)
m
(a+b x
n
+c x
(
2 n))
p
.m
189.
1.2.4.1 (a x
q
+b x
n
+c x
(
2 n-q))
p
.m
190.
1.2.4.2 (d x)
m
(a x
q
+b x
n
+c x
(
2 n-q))
p
.m
191.
1.2.4.3 (d+e x
(
n-q)) (a x
q
+b x
n
+c x
(
2 n-q))
p
.m
192.
1.2.4.4 (f x)
m
(d+e x
(
n-q)) (a x
q
+b x
n
+c x
(
2 n-q))
p
.m
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]