3.4.10 \(\int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx\) [310]

3.4.10.1 Optimal result
3.4.10.2 Mathematica [A] (verified)
3.4.10.3 Rubi [A] (verified)
3.4.10.4 Maple [A] (verified)
3.4.10.5 Fricas [A] (verification not implemented)
3.4.10.6 Sympy [F]
3.4.10.7 Maxima [A] (verification not implemented)
3.4.10.8 Giac [A] (verification not implemented)
3.4.10.9 Mupad [F(-1)]
3.4.10.10 Reduce [F]

3.4.10.1 Optimal result

Integrand size = 18, antiderivative size = 71 \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=-\frac {\sqrt {4+2 x^2+x^4}}{16 x^4}+\frac {3 \sqrt {4+2 x^2+x^4}}{64 x^2}+\frac {1}{128} \text {arctanh}\left (\frac {4+x^2}{2 \sqrt {4+2 x^2+x^4}}\right ) \]

output
1/128*arctanh(1/2*(x^2+4)/(x^4+2*x^2+4)^(1/2))-1/16*(x^4+2*x^2+4)^(1/2)/x^ 
4+3/64*(x^4+2*x^2+4)^(1/2)/x^2
 
3.4.10.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.80 \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\frac {1}{64} \left (\frac {\left (-4+3 x^2\right ) \sqrt {4+2 x^2+x^4}}{x^4}-\text {arctanh}\left (\frac {1}{2} \left (x^2-\sqrt {4+2 x^2+x^4}\right )\right )\right ) \]

input
Integrate[1/(x^5*Sqrt[4 + 2*x^2 + x^4]),x]
 
output
(((-4 + 3*x^2)*Sqrt[4 + 2*x^2 + x^4])/x^4 - ArcTanh[(x^2 - Sqrt[4 + 2*x^2 
+ x^4])/2])/64
 
3.4.10.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.13, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {1434, 1167, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^5 \sqrt {x^4+2 x^2+4}} \, dx\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{2} \int \frac {1}{x^6 \sqrt {x^4+2 x^2+4}}dx^2\)

\(\Big \downarrow \) 1167

\(\displaystyle \frac {1}{2} \left (-\frac {1}{8} \int \frac {x^2+3}{x^4 \sqrt {x^4+2 x^2+4}}dx^2-\frac {\sqrt {x^4+2 x^2+4}}{8 x^4}\right )\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {1}{2} \left (\frac {1}{8} \left (\frac {3 \sqrt {x^4+2 x^2+4}}{4 x^2}-\frac {1}{4} \int \frac {1}{x^2 \sqrt {x^4+2 x^2+4}}dx^2\right )-\frac {\sqrt {x^4+2 x^2+4}}{8 x^4}\right )\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {1}{2} \left (\frac {1}{8} \left (\frac {1}{2} \int \frac {1}{16-x^4}d\frac {2 \left (x^2+4\right )}{\sqrt {x^4+2 x^2+4}}+\frac {3 \sqrt {x^4+2 x^2+4}}{4 x^2}\right )-\frac {\sqrt {x^4+2 x^2+4}}{8 x^4}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{8} \left (\frac {1}{8} \text {arctanh}\left (\frac {x^2+4}{2 \sqrt {x^4+2 x^2+4}}\right )+\frac {3 \sqrt {x^4+2 x^2+4}}{4 x^2}\right )-\frac {\sqrt {x^4+2 x^2+4}}{8 x^4}\right )\)

input
Int[1/(x^5*Sqrt[4 + 2*x^2 + x^4]),x]
 
output
(-1/8*Sqrt[4 + 2*x^2 + x^4]/x^4 + ((3*Sqrt[4 + 2*x^2 + x^4])/(4*x^2) + Arc 
Tanh[(4 + x^2)/(2*Sqrt[4 + 2*x^2 + x^4])]/8)/8)/2
 

3.4.10.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1167
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d 
^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 - b*d*e + a*e^2))   Int[ 
(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, 
 x]*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[m 
, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimp 
lerQ[m, 1] && IntegerQ[p]) || ILtQ[Simplify[m + 2*p + 3], 0])
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 
3.4.10.4 Maple [A] (verified)

Time = 0.22 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.73

method result size
trager \(\frac {\left (3 x^{2}-4\right ) \sqrt {x^{4}+2 x^{2}+4}}{64 x^{4}}+\frac {\ln \left (\frac {x^{2}+2 \sqrt {x^{4}+2 x^{2}+4}+4}{x^{2}}\right )}{128}\) \(52\)
default \(-\frac {\sqrt {x^{4}+2 x^{2}+4}}{16 x^{4}}+\frac {3 \sqrt {x^{4}+2 x^{2}+4}}{64 x^{2}}+\frac {\operatorname {arctanh}\left (\frac {2 x^{2}+8}{4 \sqrt {x^{4}+2 x^{2}+4}}\right )}{128}\) \(60\)
risch \(\frac {3 x^{6}+2 x^{4}+4 x^{2}-16}{64 x^{4} \sqrt {x^{4}+2 x^{2}+4}}+\frac {\operatorname {arctanh}\left (\frac {2 x^{2}+8}{4 \sqrt {x^{4}+2 x^{2}+4}}\right )}{128}\) \(60\)
elliptic \(-\frac {\sqrt {x^{4}+2 x^{2}+4}}{16 x^{4}}+\frac {3 \sqrt {x^{4}+2 x^{2}+4}}{64 x^{2}}+\frac {\operatorname {arctanh}\left (\frac {2 x^{2}+8}{4 \sqrt {x^{4}+2 x^{2}+4}}\right )}{128}\) \(60\)
pseudoelliptic \(\frac {\operatorname {arctanh}\left (\frac {x^{2}+4}{2 \sqrt {x^{4}+2 x^{2}+4}}\right ) x^{4}+6 x^{2} \sqrt {x^{4}+2 x^{2}+4}-8 \sqrt {x^{4}+2 x^{2}+4}}{128 x^{4}}\) \(62\)

input
int(1/x^5/(x^4+2*x^2+4)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/64*(3*x^2-4)/x^4*(x^4+2*x^2+4)^(1/2)+1/128*ln((x^2+2*(x^4+2*x^2+4)^(1/2) 
+4)/x^2)
 
3.4.10.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.14 \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\frac {x^{4} \log \left (-x^{2} + \sqrt {x^{4} + 2 \, x^{2} + 4} + 2\right ) - x^{4} \log \left (-x^{2} + \sqrt {x^{4} + 2 \, x^{2} + 4} - 2\right ) + 6 \, x^{4} + 2 \, \sqrt {x^{4} + 2 \, x^{2} + 4} {\left (3 \, x^{2} - 4\right )}}{128 \, x^{4}} \]

input
integrate(1/x^5/(x^4+2*x^2+4)^(1/2),x, algorithm="fricas")
 
output
1/128*(x^4*log(-x^2 + sqrt(x^4 + 2*x^2 + 4) + 2) - x^4*log(-x^2 + sqrt(x^4 
 + 2*x^2 + 4) - 2) + 6*x^4 + 2*sqrt(x^4 + 2*x^2 + 4)*(3*x^2 - 4))/x^4
 
3.4.10.6 Sympy [F]

\[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\int \frac {1}{x^{5} \sqrt {x^{4} + 2 x^{2} + 4}}\, dx \]

input
integrate(1/x**5/(x**4+2*x**2+4)**(1/2),x)
 
output
Integral(1/(x**5*sqrt(x**4 + 2*x**2 + 4)), x)
 
3.4.10.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.73 \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\frac {3 \, \sqrt {x^{4} + 2 \, x^{2} + 4}}{64 \, x^{2}} - \frac {\sqrt {x^{4} + 2 \, x^{2} + 4}}{16 \, x^{4}} + \frac {1}{128} \, \operatorname {arsinh}\left (\frac {1}{3} \, \sqrt {3} + \frac {4 \, \sqrt {3}}{3 \, x^{2}}\right ) \]

input
integrate(1/x^5/(x^4+2*x^2+4)^(1/2),x, algorithm="maxima")
 
output
3/64*sqrt(x^4 + 2*x^2 + 4)/x^2 - 1/16*sqrt(x^4 + 2*x^2 + 4)/x^4 + 1/128*ar 
csinh(1/3*sqrt(3) + 4/3*sqrt(3)/x^2)
 
3.4.10.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.58 \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\frac {{\left (x^{2} - \sqrt {x^{4} + 2 \, x^{2} + 4}\right )}^{3} + 36 \, x^{2} - 36 \, \sqrt {x^{4} + 2 \, x^{2} + 4} + 64}{32 \, {\left ({\left (x^{2} - \sqrt {x^{4} + 2 \, x^{2} + 4}\right )}^{2} - 4\right )}^{2}} - \frac {1}{128} \, \log \left (x^{2} - \sqrt {x^{4} + 2 \, x^{2} + 4} + 2\right ) + \frac {1}{128} \, \log \left (-x^{2} + \sqrt {x^{4} + 2 \, x^{2} + 4} + 2\right ) \]

input
integrate(1/x^5/(x^4+2*x^2+4)^(1/2),x, algorithm="giac")
 
output
1/32*((x^2 - sqrt(x^4 + 2*x^2 + 4))^3 + 36*x^2 - 36*sqrt(x^4 + 2*x^2 + 4) 
+ 64)/((x^2 - sqrt(x^4 + 2*x^2 + 4))^2 - 4)^2 - 1/128*log(x^2 - sqrt(x^4 + 
 2*x^2 + 4) + 2) + 1/128*log(-x^2 + sqrt(x^4 + 2*x^2 + 4) + 2)
 
3.4.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\int \frac {1}{x^5\,\sqrt {x^4+2\,x^2+4}} \,d x \]

input
int(1/(x^5*(2*x^2 + x^4 + 4)^(1/2)),x)
 
output
int(1/(x^5*(2*x^2 + x^4 + 4)^(1/2)), x)
 
3.4.10.10 Reduce [F]

\[ \int \frac {1}{x^5 \sqrt {4+2 x^2+x^4}} \, dx=\int \frac {1}{\sqrt {x^{4}+2 x^{2}+4}\, x^{5}}d x \]

input
int(1/(sqrt(x**4 + 2*x**2 + 4)*x**5),x)
 
output
int(1/(sqrt(x**4 + 2*x**2 + 4)*x**5),x)