3.5.40 \(\int \tan (x) (1+5 \tan ^2(x))^{5/2} \, dx\) [440]

3.5.40.1 Optimal result
3.5.40.2 Mathematica [C] (verified)
3.5.40.3 Rubi [A] (verified)
3.5.40.4 Maple [A] (verified)
3.5.40.5 Fricas [A] (verification not implemented)
3.5.40.6 Sympy [F]
3.5.40.7 Maxima [F]
3.5.40.8 Giac [A] (verification not implemented)
3.5.40.9 Mupad [B] (verification not implemented)
3.5.40.10 Reduce [F]

3.5.40.1 Optimal result

Integrand size = 15, antiderivative size = 66 \[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=-32 \arctan \left (\frac {1}{2} \sqrt {1+5 \tan ^2(x)}\right )+16 \sqrt {1+5 \tan ^2(x)}-\frac {4}{3} \left (1+5 \tan ^2(x)\right )^{3/2}+\frac {1}{5} \left (1+5 \tan ^2(x)\right )^{5/2} \]

output
-32*arctan(1/2*(1+5*tan(x)^2)^(1/2))+16*(1+5*tan(x)^2)^(1/2)-4/3*(1+5*tan( 
x)^2)^(3/2)+1/5*(1+5*tan(x)^2)^(5/2)
 
3.5.40.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.08 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.74 \[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\frac {5 \sqrt {5} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},-\frac {5}{2},-\frac {3}{2},\frac {4 \cos ^2(x)}{5}\right ) \left (1+5 \tan ^2(x)\right )^{5/2}}{(3-2 \cos (2 x))^{5/2}} \]

input
Integrate[Tan[x]*(1 + 5*Tan[x]^2)^(5/2),x]
 
output
(5*Sqrt[5]*Hypergeometric2F1[-5/2, -5/2, -3/2, (4*Cos[x]^2)/5]*(1 + 5*Tan[ 
x]^2)^(5/2))/(3 - 2*Cos[2*x])^(5/2)
 
3.5.40.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.15, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {3042, 4153, 353, 60, 60, 60, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan (x) \left (5 \tan ^2(x)+1\right )^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (x) \left (5 \tan (x)^2+1\right )^{5/2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \int \frac {\tan (x) \left (5 \tan ^2(x)+1\right )^{5/2}}{\tan ^2(x)+1}d\tan (x)\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {1}{2} \int \frac {\left (5 \tan ^2(x)+1\right )^{5/2}}{\tan ^2(x)+1}d\tan ^2(x)\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left (\frac {2}{5} \left (5 \tan ^2(x)+1\right )^{5/2}-4 \int \frac {\left (5 \tan ^2(x)+1\right )^{3/2}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left (\frac {2}{5} \left (5 \tan ^2(x)+1\right )^{5/2}-4 \left (\frac {2}{3} \left (5 \tan ^2(x)+1\right )^{3/2}-4 \int \frac {\sqrt {5 \tan ^2(x)+1}}{\tan ^2(x)+1}d\tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left (\frac {2}{5} \left (5 \tan ^2(x)+1\right )^{5/2}-4 \left (\frac {2}{3} \left (5 \tan ^2(x)+1\right )^{3/2}-4 \left (2 \sqrt {5 \tan ^2(x)+1}-4 \int \frac {1}{\left (\tan ^2(x)+1\right ) \sqrt {5 \tan ^2(x)+1}}d\tan ^2(x)\right )\right )\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\frac {2}{5} \left (5 \tan ^2(x)+1\right )^{5/2}-4 \left (\frac {2}{3} \left (5 \tan ^2(x)+1\right )^{3/2}-4 \left (2 \sqrt {5 \tan ^2(x)+1}-\frac {8}{5} \int \frac {1}{\frac {\tan ^4(x)}{5}+\frac {4}{5}}d\sqrt {5 \tan ^2(x)+1}\right )\right )\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (\frac {2}{5} \left (5 \tan ^2(x)+1\right )^{5/2}-4 \left (\frac {2}{3} \left (5 \tan ^2(x)+1\right )^{3/2}-4 \left (2 \sqrt {5 \tan ^2(x)+1}-4 \arctan \left (\frac {1}{2} \sqrt {5 \tan ^2(x)+1}\right )\right )\right )\right )\)

input
Int[Tan[x]*(1 + 5*Tan[x]^2)^(5/2),x]
 
output
((2*(1 + 5*Tan[x]^2)^(5/2))/5 - 4*((2*(1 + 5*Tan[x]^2)^(3/2))/3 - 4*(-4*Ar 
cTan[Sqrt[1 + 5*Tan[x]^2]/2] + 2*Sqrt[1 + 5*Tan[x]^2])))/2
 

3.5.40.3.1 Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.5.40.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {223 \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{15}+5 \left (\tan ^{4}\left (x \right )\right ) \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}-\frac {14 \left (\tan ^{2}\left (x \right )\right ) \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{3}-32 \arctan \left (\frac {\sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{2}\right )\) \(61\)
default \(\frac {223 \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{15}+5 \left (\tan ^{4}\left (x \right )\right ) \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}-\frac {14 \left (\tan ^{2}\left (x \right )\right ) \sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{3}-32 \arctan \left (\frac {\sqrt {1+5 \left (\tan ^{2}\left (x \right )\right )}}{2}\right )\) \(61\)

input
int(tan(x)*(1+5*tan(x)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
223/15*(1+5*tan(x)^2)^(1/2)+5*tan(x)^4*(1+5*tan(x)^2)^(1/2)-14/3*tan(x)^2* 
(1+5*tan(x)^2)^(1/2)-32*arctan(1/2*(1+5*tan(x)^2)^(1/2))
 
3.5.40.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.76 \[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\frac {1}{15} \, {\left (75 \, \tan \left (x\right )^{4} - 70 \, \tan \left (x\right )^{2} + 223\right )} \sqrt {5 \, \tan \left (x\right )^{2} + 1} - 16 \, \arctan \left (\frac {5 \, \tan \left (x\right )^{2} - 3}{4 \, \sqrt {5 \, \tan \left (x\right )^{2} + 1}}\right ) \]

input
integrate(tan(x)*(1+5*tan(x)^2)^(5/2),x, algorithm="fricas")
 
output
1/15*(75*tan(x)^4 - 70*tan(x)^2 + 223)*sqrt(5*tan(x)^2 + 1) - 16*arctan(1/ 
4*(5*tan(x)^2 - 3)/sqrt(5*tan(x)^2 + 1))
 
3.5.40.6 Sympy [F]

\[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\int \left (5 \tan ^{2}{\left (x \right )} + 1\right )^{\frac {5}{2}} \tan {\left (x \right )}\, dx \]

input
integrate(tan(x)*(1+5*tan(x)**2)**(5/2),x)
 
output
Integral((5*tan(x)**2 + 1)**(5/2)*tan(x), x)
 
3.5.40.7 Maxima [F]

\[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\int { {\left (5 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {5}{2}} \tan \left (x\right ) \,d x } \]

input
integrate(tan(x)*(1+5*tan(x)^2)^(5/2),x, algorithm="maxima")
 
output
integrate((5*tan(x)^2 + 1)^(5/2)*tan(x), x)
 
3.5.40.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.79 \[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\frac {1}{5} \, {\left (5 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {5}{2}} - \frac {4}{3} \, {\left (5 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {3}{2}} + 16 \, \sqrt {5 \, \tan \left (x\right )^{2} + 1} - 32 \, \arctan \left (\frac {1}{2} \, \sqrt {5 \, \tan \left (x\right )^{2} + 1}\right ) \]

input
integrate(tan(x)*(1+5*tan(x)^2)^(5/2),x, algorithm="giac")
 
output
1/5*(5*tan(x)^2 + 1)^(5/2) - 4/3*(5*tan(x)^2 + 1)^(3/2) + 16*sqrt(5*tan(x) 
^2 + 1) - 32*arctan(1/2*sqrt(5*tan(x)^2 + 1))
 
3.5.40.9 Mupad [B] (verification not implemented)

Time = 1.62 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.36 \[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=\frac {\sqrt {5}\,\sqrt {{\mathrm {tan}\left (x\right )}^2+\frac {1}{5}}\,\left (25\,{\mathrm {tan}\left (x\right )}^4-\frac {70\,{\mathrm {tan}\left (x\right )}^2}{3}+\frac {223}{3}\right )}{5}-\ln \left (\mathrm {tan}\left (x\right )-\frac {2\,\sqrt {5}\,\sqrt {{\mathrm {tan}\left (x\right )}^2+\frac {1}{5}}}{5}+\frac {1}{5}{}\mathrm {i}\right )\,16{}\mathrm {i}-\ln \left (\mathrm {tan}\left (x\right )+\frac {2\,\sqrt {5}\,\sqrt {{\mathrm {tan}\left (x\right )}^2+\frac {1}{5}}}{5}-\frac {1}{5}{}\mathrm {i}\right )\,16{}\mathrm {i}+\ln \left (\mathrm {tan}\left (x\right )-\mathrm {i}\right )\,16{}\mathrm {i}+\ln \left (\mathrm {tan}\left (x\right )+1{}\mathrm {i}\right )\,16{}\mathrm {i} \]

input
int(tan(x)*(5*tan(x)^2 + 1)^(5/2),x)
 
output
log(tan(x) - 1i)*16i - log(tan(x) + (2*5^(1/2)*(tan(x)^2 + 1/5)^(1/2))/5 - 
 1i/5)*16i - log(tan(x) - (2*5^(1/2)*(tan(x)^2 + 1/5)^(1/2))/5 + 1i/5)*16i 
 + log(tan(x) + 1i)*16i + (5^(1/2)*(tan(x)^2 + 1/5)^(1/2)*(25*tan(x)^4 - ( 
70*tan(x)^2)/3 + 223/3))/5
 
3.5.40.10 Reduce [F]

\[ \int \tan (x) \left (1+5 \tan ^2(x)\right )^{5/2} \, dx=5 \sqrt {5 \tan \left (x \right )^{2}+1}\, \tan \left (x \right )^{4}-\frac {14 \sqrt {5 \tan \left (x \right )^{2}+1}\, \tan \left (x \right )^{2}}{3}+\frac {31 \sqrt {5 \tan \left (x \right )^{2}+1}}{15}+64 \left (\int \frac {\sqrt {5 \tan \left (x \right )^{2}+1}\, \tan \left (x \right )^{3}}{5 \tan \left (x \right )^{2}+1}d x \right ) \]

input
int(sqrt(5*tan(x)**2 + 1)*tan(x)*(25*tan(x)**4 + 10*tan(x)**2 + 1),x)
 
output
(75*sqrt(5*tan(x)**2 + 1)*tan(x)**4 - 70*sqrt(5*tan(x)**2 + 1)*tan(x)**2 + 
 31*sqrt(5*tan(x)**2 + 1) + 960*int((sqrt(5*tan(x)**2 + 1)*tan(x)**3)/(5*t 
an(x)**2 + 1),x))/15