3.7.81 \(\int \frac {(1+x^2) \arctan (x)^2}{x^5} \, dx\) [681]

3.7.81.1 Optimal result
3.7.81.2 Mathematica [A] (verified)
3.7.81.3 Rubi [A] (verified)
3.7.81.4 Maple [A] (verified)
3.7.81.5 Fricas [A] (verification not implemented)
3.7.81.6 Sympy [A] (verification not implemented)
3.7.81.7 Maxima [A] (verification not implemented)
3.7.81.8 Giac [F]
3.7.81.9 Mupad [B] (verification not implemented)
3.7.81.10 Reduce [B] (verification not implemented)

3.7.81.1 Optimal result

Integrand size = 13, antiderivative size = 60 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=-\frac {1}{12 x^2}-\frac {\arctan (x)}{6 x^3}-\frac {\arctan (x)}{2 x}-\frac {\left (1+x^2\right )^2 \arctan (x)^2}{4 x^4}+\frac {\log (x)}{3}-\frac {1}{6} \log \left (1+x^2\right ) \]

output
-1/12/x^2-1/6*arctan(x)/x^3-1/2*arctan(x)/x-1/4*(x^2+1)^2*arctan(x)^2/x^4+ 
1/3*ln(x)-1/6*ln(x^2+1)
 
3.7.81.2 Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.93 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=\frac {-2 \left (x+3 x^3\right ) \arctan (x)-3 \left (1+x^2\right )^2 \arctan (x)^2+x^2 \left (-1+4 x^2 \log (x)-2 x^2 \log \left (1+x^2\right )\right )}{12 x^4} \]

input
Integrate[((1 + x^2)*ArcTan[x]^2)/x^5,x]
 
output
(-2*(x + 3*x^3)*ArcTan[x] - 3*(1 + x^2)^2*ArcTan[x]^2 + x^2*(-1 + 4*x^2*Lo 
g[x] - 2*x^2*Log[1 + x^2]))/(12*x^4)
 
3.7.81.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.32, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {5479, 5485, 5361, 243, 47, 14, 16, 54, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2+1\right ) \arctan (x)^2}{x^5} \, dx\)

\(\Big \downarrow \) 5479

\(\displaystyle \frac {1}{2} \int \frac {\left (x^2+1\right ) \arctan (x)}{x^4}dx-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 5485

\(\displaystyle \frac {1}{2} \left (\int \frac {\arctan (x)}{x^4}dx+\int \frac {\arctan (x)}{x^2}dx\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 5361

\(\displaystyle \frac {1}{2} \left (\int \frac {1}{x \left (x^2+1\right )}dx+\frac {1}{3} \int \frac {1}{x^3 \left (x^2+1\right )}dx-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1}{x^2 \left (x^2+1\right )}dx^2+\frac {1}{6} \int \frac {1}{x^4 \left (x^2+1\right )}dx^2-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 47

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\int \frac {1}{x^2}dx^2-\int \frac {1}{x^2+1}dx^2\right )+\frac {1}{6} \int \frac {1}{x^4 \left (x^2+1\right )}dx^2-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 14

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\log \left (x^2\right )-\int \frac {1}{x^2+1}dx^2\right )+\frac {1}{6} \int \frac {1}{x^4 \left (x^2+1\right )}dx^2-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{2} \left (\frac {1}{6} \int \frac {1}{x^4 \left (x^2+1\right )}dx^2-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}+\frac {1}{2} \left (\log \left (x^2\right )-\log \left (x^2+1\right )\right )\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 54

\(\displaystyle \frac {1}{2} \left (\frac {1}{6} \int \left (-\frac {1}{x^2}+\frac {1}{x^4}+\frac {1}{x^2+1}\right )dx^2-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}+\frac {1}{2} \left (\log \left (x^2\right )-\log \left (x^2+1\right )\right )\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (-\frac {\arctan (x)}{3 x^3}-\frac {\arctan (x)}{x}+\frac {1}{2} \left (\log \left (x^2\right )-\log \left (x^2+1\right )\right )+\frac {1}{6} \left (-\frac {1}{x^2}-\log \left (x^2\right )+\log \left (x^2+1\right )\right )\right )-\frac {\left (x^2+1\right )^2 \arctan (x)^2}{4 x^4}\)

input
Int[((1 + x^2)*ArcTan[x]^2)/x^5,x]
 
output
-1/4*((1 + x^2)^2*ArcTan[x]^2)/x^4 + (-1/3*ArcTan[x]/x^3 - ArcTan[x]/x + ( 
Log[x^2] - Log[1 + x^2])/2 + (-x^(-2) - Log[x^2] + Log[1 + x^2])/6)/2
 

3.7.81.3.1 Defintions of rubi rules used

rule 14
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
 

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 47
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[b/(b*c 
 - a*d)   Int[1/(a + b*x), x], x] - Simp[d/(b*c - a*d)   Int[1/(c + d*x), x 
], x] /; FreeQ[{a, b, c, d}, x]
 

rule 54
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[E 
xpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && 
 ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && LtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5361
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> 
 Simp[x^(m + 1)*((a + b*ArcTan[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m + 
1))   Int[x^(m + n)*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], 
x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] & 
& IntegerQ[m])) && NeQ[m, -1]
 

rule 5479
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + 
 b*ArcTan[c*x])^p/(d*f*(m + 1))), x] - Simp[b*c*(p/(f*(m + 1)))   Int[(f*x) 
^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, 
c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] 
&& NeQ[m, -1]
 

rule 5485
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(q_.), x_Symbol] :> Simp[d   Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + 
 b*ArcTan[c*x])^p, x], x] + Simp[c^2*(d/f^2)   Int[(f*x)^(m + 2)*(d + e*x^2 
)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] 
&& EqQ[e, c^2*d] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] 
&& IntegerQ[q]))
 
3.7.81.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.95

method result size
default \(-\frac {\arctan \left (x \right )^{2}}{2 x^{2}}-\frac {\arctan \left (x \right )^{2}}{4 x^{4}}-\frac {\arctan \left (x \right )^{2}}{4}-\frac {\arctan \left (x \right )}{6 x^{3}}-\frac {\arctan \left (x \right )}{2 x}-\frac {1}{12 x^{2}}+\frac {\ln \left (x \right )}{3}-\frac {\ln \left (x^{2}+1\right )}{6}\) \(57\)
parts \(-\frac {\arctan \left (x \right )^{2}}{2 x^{2}}-\frac {\arctan \left (x \right )^{2}}{4 x^{4}}-\frac {\arctan \left (x \right )^{2}}{4}-\frac {\arctan \left (x \right )}{6 x^{3}}-\frac {\arctan \left (x \right )}{2 x}-\frac {1}{12 x^{2}}+\frac {\ln \left (x \right )}{3}-\frac {\ln \left (x^{2}+1\right )}{6}\) \(57\)
parallelrisch \(\frac {-3 x^{4} \arctan \left (x \right )^{2}+4 x^{4} \ln \left (x \right )-2 \ln \left (x^{2}+1\right ) x^{4}-6 x^{3} \arctan \left (x \right )-6 x^{2} \arctan \left (x \right )^{2}-x^{2}-2 x \arctan \left (x \right )-3 \arctan \left (x \right )^{2}}{12 x^{4}}\) \(66\)
risch \(\frac {\left (x^{4}+2 x^{2}+1\right ) \ln \left (i x +1\right )^{2}}{16 x^{4}}-\frac {\left (3 x^{4} \ln \left (-i x +1\right )-6 i x^{3}+6 x^{2} \ln \left (-i x +1\right )-2 i x +3 \ln \left (-i x +1\right )\right ) \ln \left (i x +1\right )}{24 x^{4}}+\frac {3 x^{4} \ln \left (-i x +1\right )^{2}-12 i x^{3} \ln \left (-i x +1\right )+16 x^{4} \ln \left (x \right )-8 \ln \left (x^{2}+1\right ) x^{4}+6 x^{2} \ln \left (-i x +1\right )^{2}-4 i x \ln \left (-i x +1\right )-4 x^{2}+3 \ln \left (-i x +1\right )^{2}}{48 x^{4}}\) \(174\)

input
int((x^2+1)*arctan(x)^2/x^5,x,method=_RETURNVERBOSE)
 
output
-1/2*arctan(x)^2/x^2-1/4*arctan(x)^2/x^4-1/4*arctan(x)^2-1/6/x^3*arctan(x) 
-1/2/x*arctan(x)-1/12/x^2+1/3*ln(x)-1/6*ln(x^2+1)
 
3.7.81.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.90 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=-\frac {2 \, x^{4} \log \left (x^{2} + 1\right ) - 4 \, x^{4} \log \left (x\right ) + 3 \, {\left (x^{4} + 2 \, x^{2} + 1\right )} \arctan \left (x\right )^{2} + x^{2} + 2 \, {\left (3 \, x^{3} + x\right )} \arctan \left (x\right )}{12 \, x^{4}} \]

input
integrate((x^2+1)*arctan(x)^2/x^5,x, algorithm="fricas")
 
output
-1/12*(2*x^4*log(x^2 + 1) - 4*x^4*log(x) + 3*(x^4 + 2*x^2 + 1)*arctan(x)^2 
 + x^2 + 2*(3*x^3 + x)*arctan(x))/x^4
 
3.7.81.6 Sympy [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.02 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=\frac {\log {\left (x \right )}}{3} - \frac {\log {\left (x^{2} + 1 \right )}}{6} - \frac {\operatorname {atan}^{2}{\left (x \right )}}{4} - \frac {\operatorname {atan}{\left (x \right )}}{2 x} - \frac {\operatorname {atan}^{2}{\left (x \right )}}{2 x^{2}} - \frac {1}{12 x^{2}} - \frac {\operatorname {atan}{\left (x \right )}}{6 x^{3}} - \frac {\operatorname {atan}^{2}{\left (x \right )}}{4 x^{4}} \]

input
integrate((x**2+1)*atan(x)**2/x**5,x)
 
output
log(x)/3 - log(x**2 + 1)/6 - atan(x)**2/4 - atan(x)/(2*x) - atan(x)**2/(2* 
x**2) - 1/(12*x**2) - atan(x)/(6*x**3) - atan(x)**2/(4*x**4)
 
3.7.81.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.18 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=-\frac {1}{6} \, {\left (\frac {3 \, x^{2} + 1}{x^{3}} + 3 \, \arctan \left (x\right )\right )} \arctan \left (x\right ) + \frac {3 \, x^{2} \arctan \left (x\right )^{2} - 2 \, x^{2} \log \left (x^{2} + 1\right ) + 4 \, x^{2} \log \left (x\right ) - 1}{12 \, x^{2}} - \frac {{\left (2 \, x^{2} + 1\right )} \arctan \left (x\right )^{2}}{4 \, x^{4}} \]

input
integrate((x^2+1)*arctan(x)^2/x^5,x, algorithm="maxima")
 
output
-1/6*((3*x^2 + 1)/x^3 + 3*arctan(x))*arctan(x) + 1/12*(3*x^2*arctan(x)^2 - 
 2*x^2*log(x^2 + 1) + 4*x^2*log(x) - 1)/x^2 - 1/4*(2*x^2 + 1)*arctan(x)^2/ 
x^4
 
3.7.81.8 Giac [F]

\[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=\int { \frac {{\left (x^{2} + 1\right )} \arctan \left (x\right )^{2}}{x^{5}} \,d x } \]

input
integrate((x^2+1)*arctan(x)^2/x^5,x, algorithm="giac")
 
output
integrate((x^2 + 1)*arctan(x)^2/x^5, x)
 
3.7.81.9 Mupad [B] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.85 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=\frac {\ln \left (x\right )}{3}-\frac {\ln \left (x^2+1\right )}{6}-{\mathrm {atan}\left (x\right )}^2\,\left (\frac {\frac {x^2}{2}+\frac {1}{4}}{x^4}+\frac {1}{4}\right )-\frac {1}{12\,x^2}-\frac {\mathrm {atan}\left (x\right )\,\left (\frac {x^2}{2}+\frac {1}{6}\right )}{x^3} \]

input
int((atan(x)^2*(x^2 + 1))/x^5,x)
 
output
log(x)/3 - log(x^2 + 1)/6 - atan(x)^2*((x^2/2 + 1/4)/x^4 + 1/4) - 1/(12*x^ 
2) - (atan(x)*(x^2/2 + 1/6))/x^3
 
3.7.81.10 Reduce [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.08 \[ \int \frac {\left (1+x^2\right ) \arctan (x)^2}{x^5} \, dx=\frac {-3 \mathit {atan} \left (x \right )^{2} x^{4}-6 \mathit {atan} \left (x \right )^{2} x^{2}-3 \mathit {atan} \left (x \right )^{2}-6 \mathit {atan} \left (x \right ) x^{3}-2 \mathit {atan} \left (x \right ) x -2 \,\mathrm {log}\left (x^{2}+1\right ) x^{4}+4 \,\mathrm {log}\left (x \right ) x^{4}-x^{2}}{12 x^{4}} \]

input
int((atan(x)**2*(x**2 + 1))/x**5,x)
 
output
( - 3*atan(x)**2*x**4 - 6*atan(x)**2*x**2 - 3*atan(x)**2 - 6*atan(x)*x**3 
- 2*atan(x)*x - 2*log(x**2 + 1)*x**4 + 4*log(x)*x**4 - x**2)/(12*x**4)