3.1.14 \(\int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx\) [14]

3.1.14.1 Optimal result
3.1.14.2 Mathematica [A] (verified)
3.1.14.3 Rubi [A] (verified)
3.1.14.4 Maple [F]
3.1.14.5 Fricas [B] (verification not implemented)
3.1.14.6 Sympy [A] (verification not implemented)
3.1.14.7 Maxima [F]
3.1.14.8 Giac [F]
3.1.14.9 Mupad [F(-1)]
3.1.14.10 Reduce [B] (verification not implemented)

3.1.14.1 Optimal result

Integrand size = 27, antiderivative size = 31 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {x^2+\sqrt {1+x^4}}}\right )}{\sqrt {2}} \]

output
1/2*arctanh(x*2^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2))*2^(1/2)
 
3.1.14.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.42 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\frac {\log \left (x^2+\sqrt {1+x^4}+\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}} \]

input
Integrate[Sqrt[x^2 + Sqrt[1 + x^4]]/Sqrt[1 + x^4],x]
 
output
Log[x^2 + Sqrt[1 + x^4] + Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]
 
3.1.14.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2557, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}} \, dx\)

\(\Big \downarrow \) 2557

\(\displaystyle \int \frac {1}{1-\frac {2 x^2}{\sqrt {x^4+1}+x^2}}d\frac {x}{\sqrt {\sqrt {x^4+1}+x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {\sqrt {x^4+1}+x^2}}\right )}{\sqrt {2}}\)

input
Int[Sqrt[x^2 + Sqrt[1 + x^4]]/Sqrt[1 + x^4],x]
 
output
ArcTanh[(Sqrt[2]*x)/Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]
 

3.1.14.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 2557
Int[Sqrt[(c_.)*(x_)^2 + (d_.)*Sqrt[(a_) + (b_.)*(x_)^4]]/Sqrt[(a_) + (b_.)* 
(x_)^4], x_Symbol] :> Simp[d   Subst[Int[1/(1 - 2*c*x^2), x], x, x/Sqrt[c*x 
^2 + d*Sqrt[a + b*x^4]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2 - b*d^2, 
0]
 
3.1.14.4 Maple [F]

\[\int \frac {\sqrt {x^{2}+\sqrt {x^{4}+1}}}{\sqrt {x^{4}+1}}d x\]

input
int((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x)
 
output
int((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x)
 
3.1.14.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 60 vs. \(2 (24) = 48\).

Time = 0.37 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.94 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\frac {1}{4} \, \sqrt {2} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="fricas")
 
output
1/4*sqrt(2)*log(4*x^4 + 4*sqrt(x^4 + 1)*x^2 + 2*(sqrt(2)*x^3 + sqrt(2)*sqr 
t(x^4 + 1)*x)*sqrt(x^2 + sqrt(x^4 + 1)) + 1)
 
3.1.14.6 Sympy [A] (verification not implemented)

Time = 0.99 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.48 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\frac {{G_{3, 3}^{2, 2}\left (\begin {matrix} 1, 1 & \frac {1}{2} \\\frac {1}{4}, \frac {3}{4} & 0 \end {matrix} \middle | {x^{4}} \right )}}{4 \sqrt {\pi }} \]

input
integrate((x**2+(x**4+1)**(1/2))**(1/2)/(x**4+1)**(1/2),x)
 
output
meijerg(((1, 1), (1/2,)), ((1/4, 3/4), (0,)), x**4)/(4*sqrt(pi))
 
3.1.14.7 Maxima [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1}} \,d x } \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))/sqrt(x^4 + 1), x)
 
3.1.14.8 Giac [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1}} \,d x } \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))/sqrt(x^4 + 1), x)
 
3.1.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}} \,d x \]

input
int(((x^4 + 1)^(1/2) + x^2)^(1/2)/(x^4 + 1)^(1/2),x)
 
output
int(((x^4 + 1)^(1/2) + x^2)^(1/2)/(x^4 + 1)^(1/2), x)
 
3.1.14.10 Reduce [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.35 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx=\frac {\sqrt {2}\, \left (-\mathrm {log}\left (\sqrt {\sqrt {x^{4}+1}+x^{2}}-\sqrt {2}\, x \right )+\mathrm {log}\left (\sqrt {\sqrt {x^{4}+1}+x^{2}}+\sqrt {2}\, x \right )\right )}{4} \]

input
int(sqrt(sqrt(x**4 + 1) + x**2)/sqrt(x**4 + 1),x)
 
output
(sqrt(2)*( - log(sqrt(sqrt(x**4 + 1) + x**2) - sqrt(2)*x) + log(sqrt(sqrt( 
x**4 + 1) + x**2) + sqrt(2)*x)))/4