Chapter 1
Introduction

 1.1 Listing of CAS systems tested
 1.2 Results
 1.3 Performance per integrand type
 1.4 Maximum leaf size ratio for each CAS against the optimal result
 1.5 Pass/Fail per test file for each CAS system
 1.6 Timing
 1.7 Verification
 1.8 Important notes about some of the results
 1.9 Design of the test system

This report gives the result of running the computer algebra independent integration problems.

The listing of the problems used by this report are

  1. MathematicaSyntaxTestFiles.zip
  2. MapleSyntaxTestFiles.zip

The above zip files were downloaded from rulebasedintegration.org.

The current number of problems in this test suite is [71994].

1.1 Listing of CAS systems tested

The following systems were tested at this time.

  1. Mathematica 12.1 (64 bit) on windows 10.
  2. Rubi 4.16.1 in Mathematica 12 on windows 10.
  3. Maple 2020 (64 bit) on windows 10.
  4. Maxima 5.43 on Linux. (via sagemath 8.9)
  5. Fricas 1.3.6 on Linux (via sagemath 9.0)
  6. Sympy 1.5 under Python 3.7.3 using Anaconda distribution.
  7. Giac/Xcas 1.5 on Linux. (via sagemath 8.9)

Maxima, Fricas and Giac/Xcas were called from inside SageMath. This was done using SageMath integrate command by changing the name of the algorithm to use the different CAS systems.

Sympy was called directly using Python.

1.2 Results

Important note: A number of problems in this test suite have no antiderivative in closed form. This means the antiderivative of these integrals can not be expressed in terms of elementary, special functions or Hypergeometric2F1 functions. RootSum and RootOf are not allowed.

If a CAS returns the above integral unevaluated within the time limit, then the result is counted as passed and assigned an A grade.

However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this implies CAS could not determine that the integral is not integrable in the time limit.

If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this special result is listed in the introduction section of each individual test report to make it easy to identify as this can be important result to investigate.

The results given in in the table below reflects the above.




System solved Failed






Rubi % 99.52 ( 71651 ) % 0.48 ( 343 )



Mathematica % 98.35 ( 70804 ) % 1.65 ( 1190 )



Maple % 83.46 ( 60084 ) % 16.54 ( 11910 )



Fricas % 68.07 ( 49005 ) % 31.93 ( 22989 )



Giac % 52.51 ( 37804 ) % 47.49 ( 34190 )



Maxima % 43.03 ( 30982 ) % 56.97 ( 41012 )



Sympy % 32.41 ( 23332 ) % 67.59 ( 48662 )



Table 1.1:Percentage solved for each CAS

The table below gives additional break down of the grading of quality of the antiderivatives generated by each CAS. The grading is given using the letters A,B,C and F with A being the best quality. The grading is accomplished by comparing the antiderivative generated with the optimal antiderivatives included in the test suite. The following table describes the meaning of these grades.



grade

description





A

Integral was solved and antiderivative is optimal in quality and leaf size.



B

Integral was solved and antiderivative is optimal in quality but leaf size is larger than twice the optimal antiderivatives leaf size.



C

Integral was solved and antiderivative is non-optimal in quality. This can be due to one or more of the following reasons

  1. antiderivative contains a hypergeometric function and the optimal antiderivative does not.
  2. antiderivative contains a special function and the optimal antiderivative does not.
  3. antiderivative contains the imaginary unit and the optimal antiderivative does not.



F

Integral was not solved. Either the integral was returned unevaluated within the time limit, or it timed out, or CAS hanged or crashed or an exception was raised.



Table 1.2:Description of grading applied to integration result

Grading is implemented for all CAS systems. Based on the above, the following table summarizes the grading for this test suite.






System % A grade % B grade % C grade % F grade










Rubi 98.89 0.23 0.41 0.48





Mathematica 74.67 6.18 17.49 1.65





Maple 52.8 22.93 7.72 16.54





Maxima 33.24 8.83 0.96 56.97





Fricas 48.52 18.03 1.51 31.93





Sympy 25.08 4.7 2.63 67.59





Giac 39. 12.5 1.01 47.49





Table 1.3:Antiderivative Grade distribution for each CAS

The following is a Bar chart illustration of the data in the above table.

pict

The figure below compares the CAS systems for each grade level.

pict

1.2.1 Time and leaf size Performance

The table below summarizes the performance of each CAS system in terms of time used and leaf size of results.







System Mean time (sec) Mean size Normalized mean Median size Normalized median












Rubi 0.28 156.75 1. 107. 1.






Mathematica 1.77 800.29 2.8 92. 0.94






Maple 0.46 62669. 743.6 131. 1.27






Maxima 1.34 284.97 2.46 96. 1.36






Fricas 2.81 935.28 6.76 302. 3.43






Sympy 9.65 230.82 2.53 70. 1.14






Giac 1.53 301.08 2.55 120. 1.49






Table 1.4:Time and leaf size performance for each CAS

1.3 Performance per integrand type

The following are the different integrand types the test suite contains.

  1. Algebraic Binomial problems (products involving powers of binomials and monomials).
  2. Algebraic Trinomial problems (products involving powers of trinomials, binomials and monomials).
  3. Miscellaneous Algebraic functions.
  4. Exponentials.
  5. Logarithms.
  6. Trigonometric.
  7. Inverse Trigonometric.
  8. Hyperbolic functions.
  9. Inverse Hyperbolic functions.
  10. Special functions.
  11. Independent tests.

The following table gives percentage solved of each CAS per integrand type.










Integrand type problems Rubi Mathematica Maple Maxima Fricas Sympy Giac









Independent tests 1892 98.31 98.73 92.18 79.39 94.34 71.78 82.72
Algebraic Binomial 14276 99.99 99.7 82.18 42.02 70.91 59.27 62.61
Algebraic Trinomial 10187 99.99 98.89 90.67 38.56 75.76 40.39 61.23
Algebraic Miscellaneous 1519 98.62 98.16 87.23 42.92 74.06 45.69 54.18
Exponentials 965 99.17 96.68 80.21 60.93 87.67 40.83 46.74
Logarithms 3085 98.51 97.8 54.49 48.36 57.76 25.32 43.37
Trigonometric 22551 99.56 97.61 85.75 41.34 63.42 13.64 44.13
Inverse Trigonometric 4585 99.65 97.97 83.84 31.15 48.29 28.16 48.05
Hyperbolic 5166 98.32 98.03 82.58 57.08 84.84 20.75 62.45
Inverse Hyperbolic 6626 99.52 98.46 80.47 40.34 62.27 24.89 39.5
Special functions 999 100. 95.4 69.97 35.54 48.85 39.34 34.93









Table 1.5:Percentage solved per integrand type

In addition to the above table, for each type of integrand listed above, 3D chart is made which shows how each CAS performed on that specific integrand type.

These charts and the table above can be used to show where each CAS relative strength or weakness in the area of integration.

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

1.4 Maximum leaf size ratio for each CAS against the optimal result

The following table gives the largest ratio found in each test file, between each CAS antiderivative and the optimal antiderivative.

For each test input file, the problem with the largest ratio \(\frac{\text{CAS leaf size}}{\text{Optimal leaf size}}\) is recorded with the corresponding problem number.

In each column in the table below, the first number is the maximum leaf size ratio, and the number that follows inside the parentheses is the problem number in that specific file where this maximum ratio was found. This ratio is determined only when CAS solved the the problem and also when an optimal antiderivative is known.

If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the ratio and -1 is used for the problem number.

This makes it easy to locate the problem. In the future, a direct link will be added as well.









Table 1.6Maximum leaf size ratio for each CAS against the optimal result








file # Rubi Mathematica Maple Maxima FriCAS Sympy Giac








1 1. (1) 3.9 (50) 16.6 (114) 5.1 (169) 13.7 (61) 191.1 (145) 15.5 (55)
2 7.3 (21) 6.2 (14) 3.6 (17) 2.6 (4) 55. (13) 18.5 (5) 6.2 (2)
3 1. (1) 16.1 (6) 17. (6) 14.9 (7) 11.5 (9) 1.9 (5) 2.6 (5)
4 6.4 (5) 14.3 (13) 40.7 (46) 22.4 (43) 18.7 (43) 4.4 (40) 53.7 (41)
5 1. (65) 54.7 (278) 12737.8 (278) 11. (280) 29.5 (103) 62. (12) 26.4 (141)
6 1. (1) 1. (2) 2.2 (4) 2.6 (1) 3.9 (7) 0.8 (4) 3.2 (5)
7 2.2 (3) 5.6 (7) 1.8 (3) 3.8 (3) 15.1 (9) 1.9 (7) 2.6 (3)
8 1.6 (50) 5.3 (31) 7.9 (70) 9. (11) 13. (42) 26.4 (71) 7. (70)
9 1.2 (365) 7.2 (80) 4.3 (341) 16.3 (328) 16.4 (351) 191.1 (251) 48.1 (368)
10 3.2 (335) 242.6 (327) 3343.5 (327) 49.9 (399) 109.1 (595) 76.3 (215) 25.3 (537)
11 529. (82) 127. (82) 317. (82) 3.7 (2) 150. (82) 41.3 (17) 4.9 (24)
12 1.8 (6) 2.3 (4) 1.2 (8) 2. (2) 7.8 (3) 3.4 (3) 2.1 (2)
13 7.1 (369) 23.8 (1323) 30.9 (1323) 44.4 (1323) 66.4 (1323) 136.1 (671) 45.9 (1323)
14 2. (870) 16.5 (1101) 22.6 (1101) 30. (1716) 45.7 (1101) 84.5 (67) 63. (827)
15 3.3 (97) 13.9 (72) 28.5 (100) 2.7 (155) 22.2 (21) 49.2 (119) 13.5 (119)
16 1. (1) 1.5 (17) 11. (25) 2. (10) 0. (-1) 59.5 (27) 26.8 (25)
17 2.6 (35) 10.1 (67) 39.8 (66) 2.7 (35) 12.8 (6) 5.3 (35) 17.1 (46)
18 1. (3) 27.5 (31) 68. (35) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
19 8.2 (664) 6.9 (663) 7.9 (196) 13.5 (196) 22.3 (196) 55.3 (528) 14.8 (416)
20 1.6 (254) 6.4 (94) 147.4 (69) 6. (73) 62.8 (160) 21.9 (33) 14.4 (42)
21 1. (596) 12.6 (337) 46.7 (754) 4.2 (313) 49.1 (1016) 32.8 (324) 11.6 (553)
22 1.3 (64) 2.6 (63) 15.2 (57) 1.5 (18) 17.5 (60) 3. (21) 4. (98)
23 1. (1) 1.1 (50) 10.4 (15) 0. (-1) 15.6 (15) 43. (16) 18.6 (15)
24 1.2 (173) 1.9 (45) 2. (162) 3.4 (163) 12.9 (26) 18.3 (93) 5.3 (157)
25 8.4 (2686) 13.4 (2913) 141.8 (2913) 17.8 (2285) 52. (2913) 170.1 (2672) 30.8 (2813)
26 4.3 (116) 10.3 (306) 17.9 (265) 3. (47) 30.7 (265) 27.8 (238) 8.1 (292)
27 4.2 (760) 12.3 (1051) 77.4 (546) 39.3 (1063) 40.1 (317) 36.6 (124) 14.9 (1051)
28 1.2 (46) 0.9 (45) 51.1 (15) 0. (-1) 59.6 (15) 23.3 (6) 66.9 (16)
29 1.2 (552) 3.8 (45) 10.4 (43) 4.3 (161) 100.6 (416) 16.2 (171) 11. (591)
30 1.3 (278) 10. (328) 51.5 (297) 11.3 (328) 26. (348) 10. (328) 12.5 (348)
31 1. (1) 6.4 (283) 4.9 (269) 3.1 (279) 9.5 (269) 21.6 (269) 8.5 (269)
32 2.8 (83) 3.9 (25) 5.8 (74) 3.5 (98) 15.9 (127) 16.4 (63) 4.1 (74)
33 2. (2419) 23.9 (2302) 70.8 (2351) 19.2 (1497) 74.3 (2293) 72.8 (1423) 49.7 (982)
34 1.3 (1471) 15.6 (1635) 82.2 (1180) 29. (2015) 93.4 (1452) 91.8 (2147) 32.7 (2640)
35 2.1 (833) 58.6 (507) 116.1 (801) 8.1 (579) 48.7 (533) 68.8 (920) 27. (925)
36 1. (1) 10.3 (6) 425.1 (78) 3.7 (95) 61.2 (112) 1.2 (19) 9.4 (3)
37 1. (129) 9.7 (37) 14197.2 (12) 8.9 (27) 61.2 (117) 6.9 (13) 111.9 (24)
38 1.8 (76) 42.8 (204) 421. (278) 120.1 (278) 262.7 (278) 114.1 (278) 160.9 (278)
39 1.7 (636) 8.8 (109) 9.5 (885) 7.3 (515) 60.1 (1073) 28.5 (1105) 35.7 (857)
40 1.7 (212) 13.9 (409) 50.7 (220) 9. (88) 70.4 (109) 19.6 (218) 77. (32)
41 1.9 (327) 32.6 (381) 26. (136) 7.5 (70) 109.9 (305) 47.5 (220) 37.4 (109)
42 1. (59) 1.5 (25) 15.8 (54) 1.8 (111) 8.1 (46) 58.1 (87) 43.2 (21)
43 1.6 (135) 2.4 (136) 13.8 (37) 2.1 (131) 97. (60) 27.3 (39) 43. (25)
44 1.9 (1) 6.3 (24) 6.4 (29) 0. (-1) 8.4 (35) 0.8 (1) 3.3 (42)
45 1. (1) 4.9 (4) 0.9 (4) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
46 2.1 (154) 12.7 (601) 54.7 (609) 8.5 (609) 99. (637) 26.3 (438) 62.9 (597)
47 1. (1) 22.3 (89) 2.7 (37) 1.8 (26) 24.2 (37) 42.2 (68) 13.2 (68)
48 1. (67) 16.1 (143) 2909.3 (93) 93. (94) 217.1 (93) 82.9 (93) 122. (93)
49 1. (1) 4.9 (17) 1.7 (11) 2.8 (16) 6. (16) 0. (-1) 4.5 (16)
50 1. (1) 1.7 (99) 4. (72) 1.2 (71) 22.1 (102) 20.7 (24) 35.7 (83)
51 6.2 (424) 11.6 (162) 1223.1 (192) 57.1 (63) 208.8 (192) 84.3 (192) 125.8 (192)
52 4.1 (997) 172.1 (1010) 3059.3 (1010) 6.8 (612) 85.5 (871) 57.5 (180) 64.3 (525)
53 1. (1) 1.2 (82) 9.5 (87) 3. (2) 4.4 (82) 2.5 (2) 75.3 (2)
54 1. (1) 1. (1) 16.8 (46) 2.2 (49) 9.5 (58) 2.2 (32) 50.6 (25)
55 1.2 (655) 5.3 (636) 38.7 (267) 176.7 (267) 35.7 (339) 11.2 (281) 73.8 (563)
56 1. (1) 1.3 (133) 83.5 (150) 2.6 (62) 11.6 (61) 4.4 (125) 13.8 (149)
57 1.7 (115) 3.9 (363) 97.5 (440) 6.9 (348) 47.1 (440) 21.2 (381) 14.6 (392)
58 1.5 (176) 12.4 (64) 504.9 (192) 3.9 (166) 20.8 (237) 3.6 (165) 18.1 (237)
59 7.5 (71) 39.2 (308) 376.9 (168) 10. (10) 14.9 (171) 5.6 (119) 15.2 (302)
60 26.4 (88) 16.8 (81) 1428.6 (228) 107.3 (81) 20.1 (228) 9.7 (28) 9. (233)
61 1.6 (79) 55.1 (51) 14.7 (74) 19.2 (44) 9.1 (15) 2.2 (50) 21.7 (34)
62 1.8 (383) 9.3 (340) 161.9 (62) 12.3 (340) 18.6 (404) 19.8 (425) 48.4 (456)
63 1.5 (390) 4.3 (45) 54.3 (175) 10. (390) 68.4 (197) 13.6 (321) 8.2 (329)
64 1.2 (284) 13.1 (44) 2190.9 (91) 14.3 (23) 23.9 (23) 15.9 (189) 20.7 (28)
65 1. (1) 114.1 (497) 33.3 (493) 5.3 (111) 13.2 (289) 32.4 (355) 7.6 (105)
66 1. (1) 8.6 (249) 7.6 (83) 25.1 (185) 29.6 (209) 30.8 (193) 74.3 (7)
67 1. (1) 9.2 (12) 4.3 (51) 3.2 (21) 9.9 (5) 17.1 (49) 5.1 (6)
68 1. (1) 7.1 (38) 7.7 (65) 28.8 (45) 5.6 (6) 2.2 (12) 74.3 (36)
69 1. (1) 3.3 (203) 7.8 (201) 227.2 (37) 10.6 (44) 8.7 (116) 7.2 (155)
70 2. (615) 79.6 (352) 447.5 (605) 12.2 (151) 55.8 (476) 56.4 (89) 30.6 (146)
71 1. (1) 1.1 (10) 1.4 (29) 20.7 (33) 3.7 (13) 3.9 (12) 3.2 (30)
72 1.6 (103) 533.6 (138) 3.6 (200) 5.4 (53) 15.8 (201) 2.6 (40) 173.8 (16)
73 1.9 (621) 1029.2 (406) 4910.9 (790) 41.5 (256) 36.3 (595) 44.2 (453) 24.3 (336)
74 1.6 (1108) 1478. (937) 173.2 (174) 11.6 (46) 35.5 (937) 69.4 (567) 107.9 (177)
75 1.3 (12) 3375. (37) 688.6 (48) 9.7 (16) 68.5 (35) 3.4 (1) 8.3 (13)
76 1.2 (206) 65.6 (202) 8067.4 (353) 47.4 (48) 38. (327) 40.6 (273) 18.1 (127)
77 1. (1) 6.7 (10) 3.9 (2) 16.8 (1) 5.6 (2) 412.4 (8) 7.3 (12)
78 1.4 (32) 72.6 (30) 4.4 (33) 4.4 (20) 5.5 (18) 2.3 (32) 1.3 (32)
79 1.8 (236) 228.2 (240) 51412.7 (593) 23.8 (487) 64. (418) 108.5 (89) 20.7 (29)
80 1. (1) 2.2 (2) 2.1 (4) 1.7 (2) 10.5 (7) 11.7 (4) 3.1 (2)
81 1. (1) 1.5 (16) 6. (13) 1.4 (19) 51.8 (1) 2.8 (11) 2.5 (14)
82 1. (1) 3.7 (284) 8.3 (12) 22.3 (170) 11.4 (176) 2.7 (64) 16.9 (64)
83 1. (1) 4. (62) 8.3 (76) 16.3 (133) 17.6 (33) 4.1 (9) 89.1 (8)
84 1. (1) 2.4 (61) 3.4 (50) 2.7 (5) 7.5 (5) 6. (41) 1.4 (19)
85 1. (1) 1.3 (94) 4.2 (26) 6.8 (40) 5.5 (36) 6. (61) 4.2 (92)
86 4.3 (11) 4.1 (60) 13.2 (78) 4.4 (3) 13.7 (11) 9.5 (1) 5. (11)
87 1. (1) 1. (10) 1.4 (29) 20.7 (32) 3.7 (13) 3.8 (12) 3.1 (30)
88 1. (1) 3.2 (1) 3.4 (3) 5.5 (3) 11.6 (20) 0. (-1) 4.1 (3)
89 1.4 (370) 35.3 (773) 9.3 (642) 50.3 (213) 15.8 (484) 12.8 (781) 66.1 (782)
90 1. (1) 2.8 (2) 2.9 (2) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
91 1. (1) 3. (1) 1.8 (1) 4.7 (1) 4.2 (1) 0. (-1) 2.2 (1)
92 1.1 (40) 36.7 (454) 14.3 (436) 76.1 (95) 14.2 (270) 11.7 (38) 5.4 (80)
93 1. (1) 53.4 (393) 8. (29) 27.4 (115) 9.5 (319) 3. (9) 2.3 (5)
94 1.4 (940) 84.8 (1350) 18. (1154) 63.8 (96) 15.8 (590) 15.5 (339) 7.2 (381)
95 1.2 (81) 4.9 (91) 6.9 (70) 12.7 (53) 18. (67) 14.3 (1) 5. (91)
96 1. (1) 2.1 (9) 7.6 (21) 1.4 (2) 18. (13) 1.2 (3) 5.7 (13)
97 1. (1) 1.9 (5) 10.5 (13) 1.1 (12) 51.3 (13) 3.3 (12) 2.5 (5)
98 1. (1) 173.1 (357) 564.9 (52) 1.8 (7) 12.9 (293) 3.1 (376) 33.5 (8)
99 1. (1) 4.4 (44) 6. (54) 15. (49) 11.5 (54) 2.5 (24) 8.2 (8)
100 1. (1) 2.6 (33) 1.5 (21) 10.6 (52) 11.5 (39) 6.3 (15) 2.3 (21)
101 1.5 (562) 75.5 (641) 173.9 (617) 25.5 (393) 27.4 (80) 10.4 (88) 76.2 (540)
102 1. (1) 7. (46) 4.1 (61) 3.9 (67) 16.4 (75) 1.3 (2) 104.7 (13)
103 1.4 (891) 200.5 (678) 9426.9 (611) 21. (208) 221.2 (523) 13.3 (464) 37. (1203)
104 1. (1) 941.7 (463) 15275. (454) 21.6 (548) 188.9 (369) 20.1 (272) 32.8 (257)
105 1. (130) 3975.5 (145) 172.7 (123) 4. (83) 23.7 (83) 21.1 (70) 35.4 (51)
106 1. (1) 44.6 (159) 2905.5 (351) 24.4 (272) 61.7 (288) 30.9 (239) 104.5 (36)
107 1. (1) 777.6 (45) 36518.9 (5) 0. (-1) 34.9 (45) 0. (-1) 0. (-1)
108 1. (1) 21.6 (47) 288.2 (43) 1.7 (4) 12.5 (20) 2.6 (1) 5.7 (3)
109 1. (1) 5.5 (42) 10.1 (27) 25.1 (47) 11.2 (59) 2.4 (22) 54.5 (8)
110 1. (1) 2.5 (11) 3.4 (16) 4.4 (11) 10.3 (14) 1.3 (2) 3.5 (7)
111 1. (1) 2.4 (5) 4.3 (9) 5.8 (7) 9. (19) 1.2 (2) 3.7 (6)
112 1. (1) 3.9 (15) 69.4 (103) 2.6 (94) 11. (27) 8.9 (92) 3.2 (94)
113 1. (1) 23.7 (22) 35. (29) 18.4 (8) 32.6 (9) 21.5 (6) 7.6 (25)
114 1. (1) 1997.4 (22) 31765.8 (3) 0. (-1) 55.5 (27) 0. (-1) 0. (-1)
115 1. (1) 14.7 (42) 9.8 (259) 35. (47) 20.3 (42) 3.3 (1) 15.7 (42)
116 1. (1) 10. (40) 4.1 (29) 20. (16) 11.9 (29) 0. (-1) 8.7 (18)
117 1. (1) 3.2 (18) 5.9 (73) 97.4 (27) 10.3 (68) 2.2 (53) 2.7 (12)
118 1.4 (423) 249. (874) 14.7 (578) 70.7 (255) 15.4 (515) 2.6 (5) 5.2 (112)
119 1. (1) 45.2 (153) 12.3 (284) 3.9 (65) 12.7 (227) 0. (-1) 9.4 (196)
120 1.7 (340) 55.9 (191) 46.5 (339) 5. (67) 65.4 (338) 13.1 (90) 9.1 (286)
121 1.3 (115) 2597.8 (169) 1151.1 (153) 42.7 (108) 20.4 (159) 0. (-1) 7.2 (197)
122 2.2 (197) 1873.2 (240) 7.1 (238) 58.3 (130) 20.5 (241) 3.1 (170) 5.9 (256)
123 1.3 (265) 350.5 (634) 15.8 (385) 71. (259) 16.2 (337) 2.2 (47) 7.3 (124)
124 1. (1) 3.6 (65) 24.1 (25) 18.2 (25) 7.2 (58) 2.9 (33) 3.6 (41)
125 1.2 (870) 383.4 (1373) 19.8 (970) 62. (1289) 15.9 (808) 3.1 (930) 9.8 (490)
126 1.3 (231) 66.8 (138) 544.5 (433) 37.4 (297) 55.8 (461) 7.4 (459) 15.3 (365)
127 1. (1) 5.6 (42) 12.1 (21) 45.1 (39) 15.4 (42) 3.1 (1) 4.2 (41)
128 1. (1) 4. (25) 5.2 (74) 53.1 (15) 10.5 (69) 2.2 (53) 4. (61)
129 1. (1) 5.3 (36) 19.6 (18) 8.7 (13) 20.4 (19) 0. (-1) 18.4 (15)
130 1. (1) 2.5 (8) 4. (9) 6.6 (8) 8.9 (14) 0. (-1) 3. (8)
131 1.3 (20) 3.3 (10) 2.3 (22) 4.8 (1) 12. (22) 0. (-1) 3. (10)
132 1. (1) 2.7 (3) 2.2 (8) 3.4 (8) 5.9 (9) 4.9 (18) 4.5 (12)
133 1. (1) 1.2 (1) 1.8 (1) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
134 1. (12) 3.1 (18) 26.8 (15) 32.8 (18) 40. (11) 0. (-1) 4.2 (1)
135 1. (1) 29.1 (187) 4879055.9 (170) 114.8 (57) 19.5 (231) 16.7 (241) 115.4 (200)
136 3.3 (23) 9.2 (211) 5.9 (146) 12.8 (209) 18.4 (143) 6.6 (114) 88.7 (238)
137 1.1 (281) 9.2 (164) 14.6 (80) 78.9 (391) 36.1 (273) 10.3 (396) 109.8 (293)
138 1. (1) 2.7 (1) 6.9 (9) 0.6 (5) 28.8 (4) 1.1 (5) 0.9 (5)
139 4.3 (259) 9.3 (299) 13.1 (259) 122.7 (225) 9.2 (173) 6.6 (12) 99.6 (126)
140 19.2 (34) 9.1 (133) 40.1 (34) 109.8 (34) 14.8 (63) 7.2 (135) 360.1 (31)
141 10.8 (759) 718.9 (434) 651.2 (860) 47. (927) 56.2 (503) 227.1 (140) 113.7 (904)
142 1.4 (107) 2.5 (95) 4.8 (156) 2.3 (155) 4.4 (7) 2.3 (11) 13.3 (145)
143 1.7 (100) 3.5 (200) 19.9 (90) 5.6 (195) 12.4 (642) 2.2 (9) 76.5 (620)
144 1.9 (147) 7. (85) 13.9 (55) 3.8 (186) 11.8 (93) 8.1 (206) 18.8 (233)
145 1.3 (168) 4.9 (41) 2.8 (156) 2.4 (155) 7.5 (7) 2.3 (11) 35.6 (147)
146 1. (1) 1.9 (10) 5.6 (4) 4. (11) 10.2 (33) 2. (23) 49.2 (23)
147 1. (1) 3.8 (13) 3.3 (18) 2.3 (55) 13.6 (29) 2. (58) 5.2 (31)
148 10. (146) 4.7 (83) 28.1 (148) 2.6 (165) 8. (112) 22.4 (99) 2.4 (66)
149 1.2 (25) 4.2 (25) 43.8 (20) 3.1 (21) 39.8 (21) 12.5 (21) 5.1 (8)
150 1.3 (152) 6.4 (429) 85.8 (146) 7. (218) 20.5 (1223) 24.6 (54) 4.8 (1195)
151 1. (1) 3.3 (36) 80. (56) 6.9 (1) 6.2 (30) 46.1 (5) 11.2 (14)
152 2. (344) 2.7 (248) 13.6 (329) 10.4 (375) 30. (375) 64.6 (177) 11.3 (375)
153 1.1 (117) 11.4 (54) 27.1 (147) 7.3 (67) 15. (96) 4.7 (38) 3.5 (10)
154 1.3 (109) 11.4 (164) 72.1 (110) 7.2 (164) 15. (186) 8.7 (106) 6.8 (135)
155 1. (1) 1.2 (7) 1. (2) 1.3 (2) 2.9 (5) 2.7 (4) 1.6 (2)
156 1.2 (68) 2.6 (104) 11.9 (105) 4.6 (31) 18.4 (151) 1.2 (9) 1.9 (7)
157 1. (1) 3.3 (42) 4.2 (26) 2.3 (14) 9.5 (24) 0.9 (10) 4.4 (26)
158 1.4 (51) 2.8 (111) 11.9 (112) 2.6 (22) 18.5 (156) 1.2 (9) 2. (7)
159 1. (1) 3.3 (40) 4.9 (26) 2.2 (13) 9.6 (23) 0.9 (9) 6.3 (26)
160 1. (1) 23.2 (333) 7.5 (379) 4.8 (1) 39.4 (329) 6.9 (226) 10. (259)
161 1. (1) 5.4 (53) 3.4 (98) 18.8 (90) 17.6 (20) 1.9 (10) 6. (93)
162 1. (1) 1.5 (24) 1.9 (28) 8.1 (7) 12.7 (24) 0. (-1) 2.2 (29)
163 1. (1) 30.9 (200) 8.4 (198) 18. (208) 76.9 (157) 16.8 (253) 34.9 (273)
164 1.3 (16) 9.9 (394) 15.3 (316) 29.6 (315) 175.6 (214) 96.5 (35) 21.4 (70)
165 1. (1) 13.6 (173) 7.4 (28) 4.8 (1) 39.6 (36) 4.1 (8) 4.8 (1)
166 1. (1) 7.9 (106) 3.6 (79) 4.7 (5) 9.2 (108) 2.3 (12) 4.6 (38)
167 1. (1) 2.1 (3) 3.4 (64) 18.9 (56) 17.6 (20) 1.9 (10) 6. (59)
168 1. (1) 1.5 (12) 1.9 (28) 8.1 (7) 12.6 (24) 0. (-1) 2.2 (29)
169 1. (1) 8.7 (328) 7.4 (165) 15.4 (196) 94.6 (177) 22. (152) 34.9 (246)
170 1.3 (60) 2.5 (11) 8. (38) 7.9 (40) 148.8 (12) 8.4 (37) 7. (38)
171 1. (1) 3.7 (3) 12.5 (43) 4.3 (8) 51.8 (11) 1.7 (8) 4.5 (8)
172 1.2 (109) 3.5 (212) 6.6 (102) 17. (188) 181.6 (200) 42.3 (62) 5.7 (102)
173 1.3 (257) 10.5 (252) 14.4 (114) 24.4 (104) 236.2 (244) 25.2 (183) 183.5 (109)
174 1. (1) 5.1 (48) 9.6 (22) 5. (8) 42.5 (47) 11.7 (27) 4.3 (8)
175 1. (1) 14.1 (209) 6.2 (35) 17.5 (193) 181.6 (205) 11.6 (148) 9.6 (113)
176 1. (1) 6.7 (10) 9.2 (24) 8.7 (10) 236.2 (41) 6.4 (5) 11.7 (10)
177 1. (1) 3.8 (6) 7.4 (3) 3.3 (7) 39.6 (9) 0. (-1) 3.6 (7)
178 1. (1) 3.5 (18) 3.6 (79) 2.7 (15) 60.8 (82) 0. (-1) 2.7 (31)
179 3.5 (186) 6.4 (145) 12.7 (186) 11.6 (59) 220. (136) 2.2 (119) 4.4 (86)
180 1.4 (54) 14.4 (168) 14. (169) 17.8 (124) 236.3 (209) 5.4 (142) 6.8 (167)
181 1. (1) 9.1 (26) 5. (29) 4.2 (7) 35.1 (9) 0. (-1) 3.7 (7)
182 1. (1) 5.2 (18) 3.9 (78) 3.1 (15) 75.2 (15) 0. (-1) 2.5 (5)
183 3.3 (160) 6.7 (24) 22.3 (24) 12. (91) 81.4 (124) 0. (-1) 12. (24)
184 1.1 (12) 3.4 (24) 16.5 (8) 8.4 (1) 139.3 (10) 0. (-1) 4. (1)
185 1.9 (192) 515.8 (777) 142.2 (767) 35.1 (100) 140.3 (589) 43.6 (11) 13.7 (1050)
186 1. (1) 1.9 (141) 2.7 (38) 2.3 (15) 7.9 (7) 1. (22) 3.5 (19)
187 2.1 (73) 3.5 (230) 10. (313) 9.2 (255) 12.5 (531) 3.5 (255) 4.2 (118)
188 1.2 (170) 4.7 (46) 6.2 (151) 15.6 (276) 10.9 (368) 8.2 (147) 7.7 (116)
189 1.1 (163) 3.2 (39) 2.3 (18) 1.8 (135) 4.9 (7) 1.1 (135) 3.1 (19)
190 1.7 (322) 5.5 (516) 17.2 (93) 3.7 (22) 14.3 (508) 1.7 (528) 3.5 (22)
191 1.3 (73) 6.9 (167) 26. (291) 3.4 (102) 19.3 (20) 7.6 (122) 8.2 (93)
192 8.1 (149) 1.9 (31) 7031. (175) 7.1 (202) 25.2 (216) 15.2 (61) 2.6 (60)
193 1.6 (21) 5. (12) 56.2 (20) 3.1 (40) 59.9 (32) 10.5 (24) 8.6 (8)
194 1.6 (538) 5. (156) 74.3 (235) 21.7 (244) 14.6 (516) 5.1 (61) 6.3 (505)
195 1. (43) 11.2 (42) 62.1 (46) 7. (15) 10.6 (37) 43.6 (13) 12.3 (37)
196 2. (172) 3.7 (868) 16.4 (867) 37.8 (1152) 31.8 (1368) 30.7 (997) 13. (1368)
197 1.7 (81) 24. (319) 24.6 (312) 5.8 (72) 18.9 (315) 3. (276) 6.4 (133)
198 1.2 (78) 24. (238) 18086.6 (185) 5.2 (95) 19.5 (189) 5.3 (92) 1. (298)
199 1.9 (172) 4.9 (430) 11.6 (22) 4.8 (37) 11.7 (130) 12.1 (767) 5.9 (29)
200 1. (1) 16.3 (85) 19.3 (124) 1.9 (47) 18.7 (168) 1.5 (35) 0. (-1)
201 2.8 (38) 5.6 (18) 40.5 (80) 1.3 (34) 20.9 (6) 0.7 (93) 4.1 (47)
202 1.2 (75) 2.9 (111) 11.5 (112) 2.8 (10) 20.2 (156) 1.2 (9) 0. (-1)
203 1.6 (55) 8.2 (13) 5.2 (65) 3.6 (31) 21.1 (71) 2. (31) 3.4 (31)
204 1. (1) 1.7 (102) 2.5 (221) 1.5 (31) 4.9 (140) 2.9 (83) 2.2 (18)
205 1. (1) 2.5 (57) 1.5 (92) 0. (-1) 0. (-1) 2. (179) 0. (-1)
206 1. (1) 2.6 (41) 3.3 (134) 0. (-1) 0. (-1) 7.3 (69) 84.2 (135)
207 1. (1) 2.5 (131) 1.3 (35) 0. (-1) 0. (-1) 8.5 (69) 0. (-1)
208 1.1 (174) 1.3 (195) 2.4 (144) 5.5 (155) 23.7 (150) 4.4 (29) 0. (-1)








1.5 Pass/Fail per test file for each CAS system

The following table gives the number of passed integrals and number of failed integrals per test number. There are 208 tests. Each tests corresponds to one input file.
















Table 1.7Pass/Fail per test file for each CAS















Test #
Rubi
MMA
Maple
Maxima
FriCAS
Sympy
Giac















Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail















1 175 0 175 0 173 2 164 11 172 3 156 19 165 10
2 33 2 35 0 27 8 15 20 24 11 7 28 13 22
3 13 1 14 0 11 3 8 6 12 2 9 5 8 6
4 48 2 50 0 33 17 24 26 47 3 18 32 38 12
5 279 5 283 1 282 2 235 49 280 4 249 35 255 29
6 3 4 6 1 5 2 3 4 7 0 5 2 5 2
7 7 2 9 0 9 0 7 2 9 0 4 5 9 0
8 113 0 112 1 113 0 107 6 112 1 104 9 109 4
9 376 0 376 0 376 0 371 5 376 0 347 29 374 2
10 705 0 705 0 647 58 542 163 650 55 422 283 564 141
11 100 16 95 21 60 56 19 97 88 28 29 87 17 99
12 8 0 8 0 8 0 7 1 8 0 8 0 8 0
13 1917 0 1917 0 1557 360 963 954 1602 315 1173 744 1258 659
14 3201 0 3201 0 2863 338 1879 1322 2524 677 1524 1677 2330 871
15 158 1 155 4 128 31 21 138 47 112 38 121 39 120
16 34 0 34 0 28 6 12 22 0 34 14 20 28 6
17 78 0 78 0 78 0 19 59 43 35 15 63 35 43
18 35 0 35 0 35 0 0 35 0 35 0 35 0 35
19 1071 0 1071 0 755 316 395 676 674 397 970 101 639 432
20 349 0 349 0 246 103 24 325 136 213 106 243 111 238
21 1156 0 1156 0 1002 154 283 873 853 303 584 572 800 356
22 115 0 114 1 105 10 15 100 30 85 27 88 34 81
23 51 0 51 0 14 37 0 51 14 37 25 26 14 37
24 174 0 174 0 170 4 43 131 121 53 152 22 170 4
25 3078 0 3044 34 2585 493 1616 1462 2370 708 2625 453 1988 1090
26 385 0 383 2 197 188 65 320 213 172 147 238 131 254
27 1081 0 1081 0 720 361 215 866 662 419 365 716 490 591
28 46 0 46 0 12 34 0 46 12 34 10 36 11 35
29 594 0 594 0 577 17 206 388 338 256 454 140 418 176
30 454 0 454 0 385 69 136 318 256 198 113 341 234 220
31 298 0 296 2 275 23 107 191 228 70 120 178 208 90
32 143 0 143 0 113 30 93 50 113 30 47 96 104 39
33 2590 0 2584 6 2320 270 1115 1475 2065 525 1043 1547 1592 998
34 2646 0 2646 0 2584 62 1297 1349 2258 388 1182 1464 2076 570
35 958 0 937 21 729 229 179 779 569 389 261 697 268 690
36 123 0 123 0 121 2 67 56 110 13 43 80 87 36
37 143 0 142 1 141 2 12 131 61 82 10 133 47 96
38 400 0 394 6 388 12 217 183 324 76 145 255 317 83
39 1126 0 1126 0 1062 64 395 731 844 282 486 640 739 387
40 412 1 378 35 399 14 60 353 209 204 190 223 148 265
41 413 0 400 13 376 37 108 305 250 163 139 274 190 223
42 111 0 103 8 111 0 83 28 80 31 52 59 88 23
43 145 0 145 0 142 3 61 84 115 30 89 56 87 58
44 42 0 38 4 40 2 0 42 9 33 6 36 4 38
45 4 0 4 0 4 0 0 4 0 4 0 4 0 4
46 664 0 662 2 496 168 241 423 535 129 289 375 363 301
47 96 0 92 4 49 47 9 87 47 49 44 52 34 62
48 156 0 147 9 137 19 60 96 106 50 69 87 109 47
49 17 0 14 3 2 15 2 15 7 10 0 17 2 15
50 140 0 139 1 136 4 22 118 129 11 67 73 87 53
51 491 3 494 0 489 5 360 134 430 64 432 62 410 84
52 1007 18 997 28 836 189 292 733 695 330 262 763 413 612
53 98 0 98 0 78 20 64 34 87 11 38 60 56 42
54 93 0 84 9 75 18 62 31 93 0 48 45 49 44
55 766 8 751 23 621 153 462 312 666 108 308 466 346 428
56 193 0 193 0 98 95 96 97 123 70 71 122 101 92
57 456 0 449 7 309 147 158 298 280 176 195 261 197 259
58 249 0 243 6 81 168 61 188 90 159 37 212 58 191
59 288 26 298 16 187 127 238 76 206 108 55 259 157 157
60 249 14 249 14 98 165 179 84 156 107 49 214 49 214
61 106 2 108 0 25 83 65 43 39 69 15 93 38 70
62 543 4 542 5 309 238 219 328 218 329 130 417 217 330
63 641 0 621 20 338 303 273 368 392 249 119 522 336 305
64 314 0 314 0 236 78 203 111 278 36 110 204 185 129
65 538 0 538 0 442 96 200 338 274 264 98 440 212 326
66 348 0 348 0 264 84 192 156 322 26 99 249 156 192
67 72 0 72 0 47 25 32 40 39 33 32 40 33 39
68 113 0 113 0 113 0 53 60 113 0 26 87 47 66
69 357 0 345 12 245 112 223 134 305 52 93 264 156 201
70 653 0 638 15 562 91 257 396 358 295 85 568 270 383
71 36 0 36 0 34 2 34 2 36 0 20 16 34 2
72 206 2 203 5 178 30 142 66 178 30 4 204 140 68
73 837 0 820 17 635 202 216 621 512 325 123 714 323 514
74 1560 3 1519 44 1380 183 958 605 1216 347 203 1360 1116 447
75 51 0 51 0 50 1 16 35 30 21 4 47 13 38
76 358 0 348 10 289 69 132 226 275 83 60 298 160 198
77 19 0 15 4 12 7 13 6 13 6 8 11 12 7
78 34 0 32 2 5 29 7 27 8 26 1 33 1 33
79 590 4 583 11 521 73 174 420 393 201 61 533 290 304
80 9 0 9 0 9 0 2 7 9 0 5 4 9 0
81 19 0 19 0 19 0 5 14 15 4 6 13 9 10
82 294 0 294 0 195 99 92 202 93 201 13 281 27 267
83 189 0 187 2 134 55 134 55 133 56 50 139 80 109
84 62 0 62 0 45 17 37 25 39 23 32 30 34 28
85 99 0 99 0 87 12 77 22 91 8 30 69 47 52
86 88 0 88 0 88 0 27 61 32 56 21 67 32 56
87 34 0 34 0 32 2 32 2 34 0 18 16 32 2
88 22 0 22 0 22 0 15 7 21 1 0 22 20 2
89 932 0 923 9 854 78 285 647 443 489 77 855 254 678
90 4 0 4 0 4 0 0 4 0 4 0 4 0 4
91 1 0 1 0 1 0 1 0 1 0 0 1 1 0
92 644 0 634 10 634 10 189 455 313 331 61 583 199 445
93 393 0 389 4 236 157 119 274 121 272 7 386 15 378
94 1541 0 1534 7 1532 9 451 1090 708 833 120 1421 525 1016
95 98 0 98 0 98 0 32 66 70 28 15 83 67 31
96 21 0 21 0 21 0 2 19 15 6 2 19 19 2
97 20 0 20 0 20 0 4 16 16 4 5 15 9 11
98 387 0 386 1 265 122 70 317 136 251 13 374 68 319
99 62 1 63 0 58 5 43 20 63 0 26 37 35 28
100 66 0 66 0 36 30 43 23 48 18 32 34 36 30
101 700 0 700 0 580 120 362 338 452 248 104 596 250 450
102 91 0 90 1 83 8 74 17 83 8 5 86 76 15
103 1328 0 1208 120 1113 215 353 975 910 418 246 1082 544 784
104 855 0 797 58 780 75 310 545 583 272 174 681 331 524
105 171 0 169 2 122 49 84 87 84 87 44 127 78 93
106 499 0 497 2 408 91 189 310 403 96 81 418 283 216
107 51 0 51 0 40 11 0 51 16 35 0 51 0 51
108 52 0 52 0 37 15 22 30 21 31 8 44 14 38
109 61 0 61 0 58 3 39 22 61 0 27 34 35 26
110 23 0 23 0 23 0 13 10 18 5 5 18 22 1
111 19 0 19 0 19 0 11 8 15 4 4 15 19 0
112 106 0 105 1 103 3 3 103 31 75 1 105 3 103
113 64 0 64 0 63 1 16 48 64 0 11 53 46 18
114 32 0 32 0 25 7 0 32 16 16 0 32 0 32
115 299 0 299 0 225 74 93 206 106 193 16 283 36 263
116 46 0 45 1 42 4 24 22 46 0 20 26 24 22
117 83 0 79 4 51 32 27 56 63 20 35 48 43 40
118 879 0 865 14 735 144 309 570 393 486 30 849 289 590
119 305 1 301 5 267 39 175 131 191 115 2 304 191 115
120 364 1 341 24 331 34 162 203 241 124 35 330 228 137
121 240 1 225 16 216 25 95 146 145 96 3 238 67 174
122 286 0 273 13 262 24 166 120 232 54 1 285 192 94
123 634 0 634 0 586 48 193 441 299 335 7 627 204 430
124 70 0 70 0 70 0 48 22 49 21 3 67 46 24
125 1373 0 1343 30 1263 110 459 914 728 645 11 1362 531 842
126 468 2 424 46 431 39 140 330 401 69 19 451 242 228
127 70 0 70 0 53 17 28 42 31 39 7 63 28 42
128 84 0 80 4 50 34 29 55 64 20 35 49 44 40
129 59 0 53 6 41 18 25 34 41 18 2 57 38 21
130 16 0 16 0 16 0 12 4 16 0 0 16 16 0
131 23 0 23 0 23 0 18 5 23 0 0 23 23 0
132 24 0 24 0 24 0 24 0 24 0 9 15 24 0
133 1 0 1 0 1 0 0 1 0 1 0 1 0 1
134 27 0 27 0 27 0 11 16 27 0 0 27 12 15
135 254 0 252 2 224 30 159 95 209 45 38 216 152 102
136 294 0 294 0 289 5 230 64 290 4 61 233 282 12
137 397 0 397 0 359 38 291 106 365 32 102 295 222 175
138 9 0 9 0 9 0 1 8 9 0 1 8 1 8
139 254 76 305 25 100 230 139 191 119 211 55 275 76 254
140 140 2 142 0 114 28 58 84 115 27 32 110 63 79
141 944 6 938 12 907 43 622 328 845 105 392 558 696 254
142 227 0 226 1 217 10 63 164 79 148 91 136 168 59
143 700 3 694 9 554 149 190 513 265 438 172 531 280 423
144 472 2 459 15 378 96 85 389 182 292 155 319 241 233
145 227 0 227 0 215 12 64 163 79 148 92 135 168 59
146 33 0 33 0 30 3 10 23 15 18 11 22 13 20
147 118 0 113 5 78 40 26 92 48 70 31 87 50 68
148 157 9 163 3 144 22 87 79 91 75 84 82 98 68
149 29 2 26 5 30 1 14 17 11 20 9 22 14 17
150 1301 0 1279 22 1200 101 389 912 552 749 395 906 726 575
151 70 0 67 3 69 1 32 38 28 42 23 47 28 42
152 385 0 368 17 203 182 111 274 286 99 66 319 113 272
153 153 0 153 0 133 20 86 67 131 22 42 111 67 86
154 234 0 229 5 228 6 132 102 168 66 78 156 108 126
155 12 0 12 0 6 6 1 11 6 6 3 9 1 11
156 174 0 169 5 139 35 60 114 108 66 19 155 46 128
157 50 0 49 1 37 13 14 36 28 22 3 47 17 33
158 178 0 176 2 147 31 53 125 110 68 14 164 48 130
159 49 0 49 0 36 13 11 38 27 22 3 46 17 32
160 502 0 465 37 341 161 258 244 454 48 94 408 196 306
161 102 0 101 1 80 22 83 19 78 24 29 73 43 59
162 33 0 33 0 31 2 31 2 33 0 9 24 31 2
163 369 0 369 0 318 51 210 159 304 65 108 261 267 102
164 525 0 501 24 488 37 196 329 366 159 68 457 269 256
165 183 0 181 2 108 75 131 52 150 33 53 130 101 82
166 111 0 111 0 111 0 64 47 111 0 26 85 71 40
167 68 0 68 0 58 10 60 8 60 8 21 47 38 30
168 33 0 33 0 31 2 31 2 33 0 8 25 31 2
169 336 0 335 1 293 43 206 130 283 53 90 246 256 80
170 85 0 84 1 85 0 20 65 67 18 14 71 44 41
171 72 5 71 6 69 8 61 16 64 13 29 48 46 31
172 206 41 247 0 207 40 151 96 209 38 64 183 177 70
173 263 0 263 0 249 14 135 128 246 17 40 223 215 48
174 61 0 60 1 58 3 53 8 61 0 28 33 35 26
175 183 41 224 0 164 60 105 119 177 47 31 193 126 98
176 53 0 53 0 43 10 12 41 50 3 5 48 22 31
177 16 0 16 0 8 8 5 11 12 4 3 13 4 12
178 84 0 80 4 50 34 39 45 63 21 33 51 44 40
179 201 0 192 9 140 61 90 111 142 59 8 193 113 88
180 220 0 220 0 180 40 105 115 211 9 10 210 147 73
181 29 0 29 0 19 10 12 17 25 4 4 25 8 21
182 83 0 75 8 49 34 49 34 62 21 34 49 43 40
183 175 0 175 0 136 39 92 83 130 45 0 175 106 69
184 27 0 27 0 14 13 10 17 24 3 0 27 14 13
185 1059 0 1051 8 936 123 740 319 968 91 263 796 779 280
186 156 0 156 0 109 47 49 107 43 113 45 111 45 111
187 663 0 663 0 506 157 225 438 241 422 160 503 175 488
188 370 1 370 1 249 122 65 306 147 224 86 285 94 277
189 166 0 166 0 112 54 55 111 52 114 50 116 53 113
190 569 0 558 11 476 93 209 360 236 333 109 460 185 384
191 295 1 288 8 197 99 51 245 122 174 72 224 79 217
192 216 27 231 12 196 47 106 137 146 97 74 169 124 119
193 46 3 47 2 48 1 20 29 15 34 8 41 16 33
194 538 0 536 2 508 30 258 280 256 282 138 400 171 367
195 62 0 60 2 61 1 30 32 17 45 9 53 16 46
196 1378 0 1353 25 1100 278 515 863 1110 268 445 933 728 650
197 361 0 361 0 342 19 238 123 338 23 80 281 257 104
198 300 0 294 6 273 27 227 73 223 77 95 205 29 271
199 935 0 914 21 771 164 451 484 829 106 193 742 527 408
200 190 0 185 5 154 36 60 130 120 70 38 152 45 145
201 100 0 98 2 74 26 21 79 69 31 1 99 4 96
202 178 0 173 5 103 75 51 127 113 65 14 164 46 132
203 71 0 71 0 53 18 42 29 49 22 32 39 23 48
204 311 0 300 11 179 132 139 172 258 53 151 160 133 178
205 218 0 190 28 154 64 60 158 60 158 106 112 60 158
206 136 0 134 2 118 18 34 102 34 102 50 86 106 30
207 136 0 136 0 104 32 34 102 34 102 50 86 34 102
208 198 0 193 5 144 54 88 110 102 96 36 162 16 182















1.6 Timing

The command AboluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate call. In Maple, the command Usage was used as in the following example

cpu_time := Usage(assign ('result_of _int',int(expr,x)),output='realtime'

For all other CAS systems, the elapsed time to complete each integral was found by taking the difference between the time after the call has completed from the time before the call was made. This was done using Python’s time.time() call.

All elapsed times shown are in seconds. A time limit of 3 minutes was used for each integral. If the integrate command did not complete within this time limit, the integral was aborted and considered to have failed and assigned an F grade. The time used by failed integrals due to time out is not counted in the final statistics.

1.7 Verification

A verification phase was applied on the result of integration for Rubi and Mathematica. Future version of this report will implement verification for the other CAS systems. For the integrals whose result was not run through a verification phase, it is assumed that the antiderivative produced was correct.

Verification phase has 3 minutes time out. An integral whose result was not verified could still be correct. Further investigation is needed on those integrals which failed verifications. Such integrals are marked in the summary table below and also in each integral separate section so they are easy to identify and locate.

1.8 Important notes about some of the results

1.8.1 Important note about Maxima results

Since these integrals are run in a batch mode, using an automated script, and by using sagemath (SageMath uses Maxima), then any integral where Maxima needs an interactive response from the user to answer a question during evaluation of the integral in order to complete the integration, will fail and is counted as failed.

The exception raised is ValueError. Therefore Maxima result below is lower than what could result if Maxima was run directly and each question Maxima asks was answered correctly.

The percentage of such failures were not counted for each test file, but for an example, for the Timofeev test file, there were about 30 such integrals out of total 705, or about 4 percent. This pecrentage can be higher or lower depending on the specific input test file.

Such integrals can be indentified by looking at the output of the integration in each section for Maxima. If the output was an exception ValueError then this is most likely due to this reason.

Maxima integrate was run using SageMath with the following settings set by default

'besselexpand : true'
'display2d : false'
'domain : complex'
'keepfloat : true'
'load(to_poly_solve)'
'load(simplify_sum)'
'load(abs_integrate)' 'load(diag)'

SageMath loading of Maxima abs_integrate was found to cause some problem. So the following code was added to disable this effect.

 from sage.interfaces.maxima_lib import maxima_lib
 maxima_lib.set('extra_definite_integration_methods', '[]')
 maxima_lib.set('extra_integration_methods', '[]')

See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/ for reference.

1.8.2 Important note about FriCAS and Giac/XCAS results

There are Few integrals which failed due to SageMath not able to translate the result back to SageMath syntax and not because these CAS system were not able to do the integrations.

These will fail With error Exception raised: NotImplementedError

The number of such cases seems to be very small. About 1 or 2 percent of all integrals.

Hopefully the next version of SageMath will have complete translation of FriCAS and XCAS syntax and I will re-run all the tests again when this happens.

1.8.3 Important note about finding leaf size of antiderivative

For Mathematica, Rubi and Maple, the buildin system function LeafSize is used to find the leaf size of each antiderivative.

The other CAS systems (SageMath and Sympy) do not have special buildin function for this purpose at this time. Therefore the leaf size is determined as follows.

For Fricas, Giac and Maxima (all called via sagemath) the following code is used


#see https://stackoverflow.com/questions/25202346/how-to-obtain-leaf-count-expression-size-in-sage

def tree(expr):
    if expr.operator() is None:
       return expr
    else:
       return [expr.operator()]+map(tree, expr.operands())

try:
    # 1.35 is a fudge factor since this estimate of leaf count is bit lower than
    #what it should be compared to Mathematica's
    leafCount = round(1.35*len(flatten(tree(anti))))
except Exception as ee:
    leafCount =1

For Sympy, called directly from Python, the following code is used

try:
  # 1.7 is a fudge factor since it is low side from actual leaf count
  leafCount = round(1.7*count_ops(anti))

  except Exception as ee:
         leafCount =1

When these cas systems have a buildin function to find the leaf size of expressions, it will be used instead, and these tests run again.

1.9 Design of the test system

The following diagram gives a high level view of the current test build system.