Chapter 1
Introduction
This report gives the result of running the computer algebra independent integration problems.
The listing of the problems used by this report are
-
MathematicaSyntaxTestFiles.zip
-
MapleSyntaxTestFiles.zip
The above zip files were downloaded from rulebasedintegration.org.
The current number of problems in this test suite is [71994].
1.1 Listing of CAS systems tested
The following systems were tested at this time.
-
Mathematica 12.1 (64 bit) on windows 10.
-
Rubi 4.16.1 in Mathematica 12 on windows 10.
-
Maple 2020 (64 bit) on windows 10.
-
Maxima 5.43 on Linux. (via sagemath 8.9)
-
Fricas 1.3.6 on Linux (via sagemath 9.0)
-
Sympy 1.5 under Python 3.7.3 using Anaconda distribution.
-
Giac/Xcas 1.5 on Linux. (via sagemath 8.9)
Maxima, Fricas and Giac/Xcas were called from inside SageMath. This was done using SageMath
integrate command by changing the name of the algorithm to use the different CAS systems.
Sympy was called directly using Python.
1.2 Results
Important note: A number of problems in this test suite have no antiderivative in closed form. This
means the antiderivative of these integrals can not be expressed in terms of elementary, special functions
or Hypergeometric2F1 functions. RootSum and RootOf are not allowed.
If a CAS returns the above integral unevaluated within the time limit, then the result is counted as
passed and assigned an A grade.
However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this
implies CAS could not determine that the integral is not integrable in the time limit.
If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this
special result is listed in the introduction section of each individual test report to make it easy to
identify as this can be important result to investigate.
The results given in in the table below reflects the above.
|
|
|
System |
solved |
Failed |
|
|
|
|
|
|
Rubi |
% 99.52 ( 71651 ) |
% 0.48 ( 343 ) |
|
|
|
Mathematica |
% 98.35 ( 70804 ) |
% 1.65 ( 1190 ) |
|
|
|
Maple |
% 83.46 ( 60084 ) |
% 16.54 ( 11910 ) |
|
|
|
Fricas | % 68.07 ( 49005 ) | % 31.93 ( 22989 ) |
|
|
|
Giac |
% 52.51 ( 37804 ) |
% 47.49 ( 34190 ) |
|
|
|
Maxima |
% 43.03 ( 30982 ) |
% 56.97 ( 41012 ) |
|
|
|
Sympy |
% 32.41 ( 23332 ) |
% 67.59 ( 48662 ) |
|
|
|
|
Table 1.1:Percentage solved for each CAS
The table below gives additional break down of the grading of quality of the antiderivatives generated by
each CAS. The grading is given using the letters A,B,C and F with A being the best quality.
The grading is accomplished by comparing the antiderivative generated with the optimal
antiderivatives included in the test suite. The following table describes the meaning of these
grades.
|
|
grade |
description |
|
|
|
|
A |
Integral was solved and antiderivative is optimal in quality and leaf size. |
|
|
B |
Integral was solved and antiderivative is optimal in quality but leaf size is
larger than twice the optimal antiderivatives leaf size. |
|
|
C |
Integral was solved and antiderivative is non-optimal in quality. This can be due
to one or more of the following reasons
-
antiderivative contains a hypergeometric function and the optimal
antiderivative does not.
-
antiderivative contains a special function and the optimal
antiderivative does not.
-
antiderivative contains the imaginary unit and the optimal
antiderivative does not.
|
|
|
F |
Integral was not solved. Either the integral was returned unevaluated within
the time limit, or it timed out, or CAS hanged or crashed or an exception
was raised. |
|
|
|
Table 1.2:Description of grading applied to integration result
Grading is implemented for all CAS systems. Based on the above, the following table summarizes the
grading for this test suite.
|
|
|
|
|
System |
% A grade |
% B grade |
% C grade |
% F grade |
|
|
|
|
|
|
|
|
|
|
Rubi |
98.89 |
0.23 |
0.41 |
0.48 |
|
|
|
|
|
Mathematica |
74.67 |
6.18 |
17.49 |
1.65 |
|
|
|
|
|
Maple |
52.8 | 22.93 | 7.72 | 16.54 |
|
|
|
|
|
Maxima | 33.24 | 8.83 | 0.96 | 56.97 |
|
|
|
|
|
Fricas |
48.52 |
18.03 |
1.51 |
31.93 |
|
|
|
|
|
Sympy |
25.08 |
4.7 |
2.63 |
67.59 |
|
|
|
|
|
Giac |
39. |
12.5 |
1.01 |
47.49 |
|
|
|
|
|
|
Table 1.3:Antiderivative Grade distribution for each CAS
The following is a Bar chart illustration of the data in the above table.
The figure below compares the CAS systems for each grade level.
1.2.1 Time and leaf size Performance
The table below summarizes the performance of each CAS system in terms of time used and leaf size of
results.
|
|
|
|
|
|
System |
Mean time (sec) |
Mean size |
Normalized mean |
Median size |
Normalized median |
|
|
|
|
|
|
|
|
|
|
|
|
Rubi |
0.28 |
156.75 |
1. |
107. |
1. |
|
|
|
|
|
|
Mathematica |
1.77 |
800.29 |
2.8 |
92. |
0.94 |
|
|
|
|
|
|
Maple |
0.46 | 62669. | 743.6 | 131. | 1.27 |
|
|
|
|
|
|
Maxima | 1.34 | 284.97 | 2.46 | 96. | 1.36 |
|
|
|
|
|
|
Fricas |
2.81 |
935.28 |
6.76 |
302. |
3.43 |
|
|
|
|
|
|
Sympy |
9.65 |
230.82 |
2.53 |
70. |
1.14 |
|
|
|
|
|
|
Giac |
1.53 |
301.08 |
2.55 |
120. |
1.49 |
|
|
|
|
|
|
|
Table 1.4:Time and leaf size performance for each CAS
1.3 Performance per integrand type
The following are the different integrand types the test suite contains.
-
Algebraic Binomial problems (products involving powers of binomials and monomials).
-
Algebraic Trinomial problems (products involving powers of trinomials, binomials and
monomials).
-
Miscellaneous Algebraic functions.
-
Exponentials.
-
Logarithms.
-
Trigonometric.
-
Inverse Trigonometric.
-
Hyperbolic functions.
-
Inverse Hyperbolic functions.
-
Special functions.
-
Independent tests.
The following table gives percentage solved of each CAS per integrand type.
|
|
|
|
|
|
|
|
|
Integrand type |
problems |
Rubi |
Mathematica |
Maple |
Maxima |
Fricas |
Sympy |
Giac |
|
|
|
|
|
|
|
|
|
Independent tests |
1892 |
98.31 |
98.73 |
92.18 |
79.39 |
94.34 |
71.78 |
82.72 |
Algebraic Binomial |
14276 |
99.99 |
99.7 |
82.18 |
42.02 |
70.91 |
59.27 |
62.61 |
Algebraic Trinomial |
10187 |
99.99 |
98.89 |
90.67 |
38.56 |
75.76 |
40.39 |
61.23 |
Algebraic Miscellaneous |
1519 |
98.62 |
98.16 |
87.23 |
42.92 |
74.06 |
45.69 |
54.18 |
Exponentials |
965 |
99.17 |
96.68 |
80.21 |
60.93 |
87.67 |
40.83 |
46.74 |
Logarithms | 3085 | 98.51 | 97.8 | 54.49 | 48.36 | 57.76 | 25.32 | 43.37 |
Trigonometric |
22551 |
99.56 |
97.61 |
85.75 |
41.34 |
63.42 |
13.64 |
44.13 |
Inverse Trigonometric |
4585 |
99.65 |
97.97 |
83.84 |
31.15 |
48.29 |
28.16 |
48.05 |
Hyperbolic |
5166 |
98.32 |
98.03 |
82.58 |
57.08 |
84.84 |
20.75 |
62.45 |
Inverse Hyperbolic |
6626 |
99.52 |
98.46 |
80.47 |
40.34 |
62.27 |
24.89 |
39.5 |
Special functions |
999 |
100. |
95.4 |
69.97 |
35.54 |
48.85 |
39.34 |
34.93 |
|
|
|
|
|
|
|
|
|
|
Table 1.5:Percentage solved per integrand type
In addition to the above table, for each type of integrand listed above, 3D chart is made which shows
how each CAS performed on that specific integrand type.
These charts and the table above can be used to show where each CAS relative strength or weakness in
the area of integration.
1.4 Maximum leaf size ratio for each CAS against the optimal result
The following table gives the largest ratio found in each test file, between each CAS antiderivative and
the optimal antiderivative.
For each test input file, the problem with the largest ratio \(\frac{\text{CAS leaf size}}{\text{Optimal leaf size}}\) is recorded with the corresponding problem
number.
In each column in the table below, the first number is the maximum leaf size ratio, and the number that
follows inside the parentheses is the problem number in that specific file where this maximum ratio was
found. This ratio is determined only when CAS solved the the problem and also when an optimal
antiderivative is known.
If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not
possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the
ratio and -1 is used for the problem number.
This makes it easy to locate the problem. In the future, a direct link will be added as well.
|
|
|
|
|
|
|
|
Table 1.6Maximum leaf size ratio for each CAS against the optimal
result
|
|
|
|
|
|
|
|
|
file # |
Rubi |
Mathematica |
Maple |
Maxima |
FriCAS |
Sympy |
Giac |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1. (1) |
3.9 (50) |
16.6 (114) |
5.1 (169) |
13.7 (61) |
191.1 (145) |
15.5 (55) |
2 |
7.3 (21) |
6.2 (14) |
3.6 (17) |
2.6 (4) |
55. (13) |
18.5 (5) |
6.2 (2) |
3 |
1. (1) |
16.1 (6) |
17. (6) |
14.9 (7) |
11.5 (9) |
1.9 (5) |
2.6 (5) |
4 |
6.4 (5) |
14.3 (13) |
40.7 (46) |
22.4 (43) |
18.7 (43) |
4.4 (40) |
53.7 (41) |
5 |
1. (65) |
54.7 (278) |
12737.8 (278) |
11. (280) |
29.5 (103) |
62. (12) |
26.4 (141) |
6 |
1. (1) |
1. (2) |
2.2 (4) |
2.6 (1) |
3.9 (7) |
0.8 (4) |
3.2 (5) |
7 |
2.2 (3) |
5.6 (7) |
1.8 (3) |
3.8 (3) |
15.1 (9) |
1.9 (7) |
2.6 (3) |
8 |
1.6 (50) |
5.3 (31) |
7.9 (70) |
9. (11) |
13. (42) |
26.4 (71) |
7. (70) |
9 |
1.2 (365) |
7.2 (80) |
4.3 (341) |
16.3 (328) |
16.4 (351) |
191.1 (251) |
48.1 (368) |
10 |
3.2 (335) |
242.6 (327) |
3343.5 (327) |
49.9 (399) |
109.1 (595) |
76.3 (215) |
25.3 (537) |
11 |
529. (82) |
127. (82) |
317. (82) |
3.7 (2) |
150. (82) |
41.3 (17) |
4.9 (24) |
12 |
1.8 (6) |
2.3 (4) |
1.2 (8) |
2. (2) |
7.8 (3) |
3.4 (3) |
2.1 (2) |
13 |
7.1 (369) |
23.8 (1323) |
30.9 (1323) |
44.4 (1323) |
66.4 (1323) |
136.1 (671) |
45.9 (1323) |
14 |
2. (870) |
16.5 (1101) |
22.6 (1101) |
30. (1716) |
45.7 (1101) |
84.5 (67) |
63. (827) |
15 |
3.3 (97) |
13.9 (72) |
28.5 (100) |
2.7 (155) |
22.2 (21) |
49.2 (119) |
13.5 (119) |
16 |
1. (1) |
1.5 (17) |
11. (25) |
2. (10) |
0. (-1) |
59.5 (27) |
26.8 (25) |
17 |
2.6 (35) |
10.1 (67) |
39.8 (66) |
2.7 (35) |
12.8 (6) |
5.3 (35) |
17.1 (46) |
18 |
1. (3) |
27.5 (31) |
68. (35) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
19 |
8.2 (664) |
6.9 (663) |
7.9 (196) |
13.5 (196) |
22.3 (196) |
55.3 (528) |
14.8 (416) |
20 |
1.6 (254) |
6.4 (94) |
147.4 (69) |
6. (73) |
62.8 (160) |
21.9 (33) |
14.4 (42) |
|
21 |
1. (596) |
12.6 (337) |
46.7 (754) |
4.2 (313) |
49.1 (1016) |
32.8 (324) |
11.6 (553) |
22 |
1.3 (64) |
2.6 (63) |
15.2 (57) |
1.5 (18) |
17.5 (60) |
3. (21) |
4. (98) |
23 |
1. (1) |
1.1 (50) |
10.4 (15) |
0. (-1) |
15.6 (15) |
43. (16) |
18.6 (15) |
24 |
1.2 (173) |
1.9 (45) |
2. (162) |
3.4 (163) |
12.9 (26) |
18.3 (93) |
5.3 (157) |
25 |
8.4 (2686) |
13.4 (2913) |
141.8 (2913) |
17.8 (2285) |
52. (2913) |
170.1 (2672) |
30.8 (2813) |
26 |
4.3 (116) |
10.3 (306) |
17.9 (265) |
3. (47) |
30.7 (265) |
27.8 (238) |
8.1 (292) |
27 |
4.2 (760) |
12.3 (1051) |
77.4 (546) |
39.3 (1063) |
40.1 (317) |
36.6 (124) |
14.9 (1051) |
28 |
1.2 (46) |
0.9 (45) |
51.1 (15) |
0. (-1) |
59.6 (15) |
23.3 (6) |
66.9 (16) |
29 |
1.2 (552) |
3.8 (45) |
10.4 (43) |
4.3 (161) |
100.6 (416) |
16.2 (171) |
11. (591) |
30 |
1.3 (278) |
10. (328) |
51.5 (297) |
11.3 (328) |
26. (348) |
10. (328) |
12.5 (348) |
31 |
1. (1) |
6.4 (283) |
4.9 (269) |
3.1 (279) |
9.5 (269) |
21.6 (269) |
8.5 (269) |
32 |
2.8 (83) |
3.9 (25) |
5.8 (74) |
3.5 (98) |
15.9 (127) |
16.4 (63) |
4.1 (74) |
33 |
2. (2419) |
23.9 (2302) |
70.8 (2351) |
19.2 (1497) |
74.3 (2293) |
72.8 (1423) |
49.7 (982) |
34 |
1.3 (1471) |
15.6 (1635) |
82.2 (1180) |
29. (2015) |
93.4 (1452) |
91.8 (2147) |
32.7 (2640) |
35 |
2.1 (833) |
58.6 (507) |
116.1 (801) |
8.1 (579) |
48.7 (533) |
68.8 (920) |
27. (925) |
36 |
1. (1) |
10.3 (6) |
425.1 (78) |
3.7 (95) |
61.2 (112) |
1.2 (19) |
9.4 (3) |
37 |
1. (129) |
9.7 (37) |
14197.2 (12) |
8.9 (27) |
61.2 (117) |
6.9 (13) |
111.9 (24) |
38 |
1.8 (76) |
42.8 (204) |
421. (278) |
120.1 (278) |
262.7 (278) |
114.1 (278) |
160.9 (278) |
39 |
1.7 (636) |
8.8 (109) |
9.5 (885) |
7.3 (515) |
60.1 (1073) |
28.5 (1105) |
35.7 (857) |
40 |
1.7 (212) |
13.9 (409) |
50.7 (220) |
9. (88) |
70.4 (109) |
19.6 (218) |
77. (32) |
|
41 |
1.9 (327) |
32.6 (381) |
26. (136) |
7.5 (70) |
109.9 (305) |
47.5 (220) |
37.4 (109) |
42 |
1. (59) |
1.5 (25) |
15.8 (54) |
1.8 (111) |
8.1 (46) |
58.1 (87) |
43.2 (21) |
43 |
1.6 (135) |
2.4 (136) |
13.8 (37) |
2.1 (131) |
97. (60) |
27.3 (39) |
43. (25) |
44 |
1.9 (1) |
6.3 (24) |
6.4 (29) |
0. (-1) |
8.4 (35) |
0.8 (1) |
3.3 (42) |
45 |
1. (1) |
4.9 (4) |
0.9 (4) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
46 |
2.1 (154) |
12.7 (601) |
54.7 (609) |
8.5 (609) |
99. (637) |
26.3 (438) |
62.9 (597) |
47 |
1. (1) |
22.3 (89) |
2.7 (37) |
1.8 (26) |
24.2 (37) |
42.2 (68) |
13.2 (68) |
48 |
1. (67) |
16.1 (143) |
2909.3 (93) |
93. (94) |
217.1 (93) |
82.9 (93) |
122. (93) |
49 |
1. (1) |
4.9 (17) |
1.7 (11) |
2.8 (16) |
6. (16) |
0. (-1) |
4.5 (16) |
50 |
1. (1) |
1.7 (99) |
4. (72) |
1.2 (71) |
22.1 (102) |
20.7 (24) |
35.7 (83) |
51 |
6.2 (424) |
11.6 (162) |
1223.1 (192) |
57.1 (63) |
208.8 (192) |
84.3 (192) |
125.8 (192) |
52 |
4.1 (997) |
172.1 (1010) |
3059.3 (1010) |
6.8 (612) |
85.5 (871) |
57.5 (180) |
64.3 (525) |
53 |
1. (1) |
1.2 (82) |
9.5 (87) |
3. (2) |
4.4 (82) |
2.5 (2) |
75.3 (2) |
54 |
1. (1) |
1. (1) |
16.8 (46) |
2.2 (49) |
9.5 (58) |
2.2 (32) |
50.6 (25) |
55 |
1.2 (655) |
5.3 (636) |
38.7 (267) |
176.7 (267) |
35.7 (339) |
11.2 (281) |
73.8 (563) |
56 |
1. (1) |
1.3 (133) |
83.5 (150) |
2.6 (62) |
11.6 (61) |
4.4 (125) |
13.8 (149) |
57 |
1.7 (115) |
3.9 (363) |
97.5 (440) |
6.9 (348) |
47.1 (440) |
21.2 (381) |
14.6 (392) |
58 |
1.5 (176) |
12.4 (64) |
504.9 (192) |
3.9 (166) |
20.8 (237) |
3.6 (165) |
18.1 (237) |
59 |
7.5 (71) |
39.2 (308) |
376.9 (168) |
10. (10) |
14.9 (171) |
5.6 (119) |
15.2 (302) |
60 |
26.4 (88) |
16.8 (81) |
1428.6 (228) |
107.3 (81) |
20.1 (228) |
9.7 (28) |
9. (233) |
|
61 |
1.6 (79) |
55.1 (51) |
14.7 (74) |
19.2 (44) |
9.1 (15) |
2.2 (50) |
21.7 (34) |
62 |
1.8 (383) |
9.3 (340) |
161.9 (62) |
12.3 (340) |
18.6 (404) |
19.8 (425) |
48.4 (456) |
63 |
1.5 (390) |
4.3 (45) |
54.3 (175) |
10. (390) |
68.4 (197) |
13.6 (321) |
8.2 (329) |
64 |
1.2 (284) |
13.1 (44) |
2190.9 (91) |
14.3 (23) |
23.9 (23) |
15.9 (189) |
20.7 (28) |
65 |
1. (1) |
114.1 (497) |
33.3 (493) |
5.3 (111) |
13.2 (289) |
32.4 (355) |
7.6 (105) |
66 |
1. (1) |
8.6 (249) |
7.6 (83) |
25.1 (185) |
29.6 (209) |
30.8 (193) |
74.3 (7) |
67 |
1. (1) |
9.2 (12) |
4.3 (51) |
3.2 (21) |
9.9 (5) |
17.1 (49) |
5.1 (6) |
68 |
1. (1) |
7.1 (38) |
7.7 (65) |
28.8 (45) |
5.6 (6) |
2.2 (12) |
74.3 (36) |
69 |
1. (1) |
3.3 (203) |
7.8 (201) |
227.2 (37) |
10.6 (44) |
8.7 (116) |
7.2 (155) |
70 |
2. (615) |
79.6 (352) |
447.5 (605) |
12.2 (151) |
55.8 (476) |
56.4 (89) |
30.6 (146) |
71 |
1. (1) |
1.1 (10) |
1.4 (29) |
20.7 (33) |
3.7 (13) |
3.9 (12) |
3.2 (30) |
72 |
1.6 (103) |
533.6 (138) |
3.6 (200) |
5.4 (53) |
15.8 (201) |
2.6 (40) |
173.8 (16) |
73 |
1.9 (621) |
1029.2 (406) |
4910.9 (790) |
41.5 (256) |
36.3 (595) |
44.2 (453) |
24.3 (336) |
74 |
1.6 (1108) |
1478. (937) |
173.2 (174) |
11.6 (46) |
35.5 (937) |
69.4 (567) |
107.9 (177) |
75 |
1.3 (12) |
3375. (37) |
688.6 (48) |
9.7 (16) |
68.5 (35) |
3.4 (1) |
8.3 (13) |
76 |
1.2 (206) |
65.6 (202) |
8067.4 (353) |
47.4 (48) |
38. (327) |
40.6 (273) |
18.1 (127) |
77 |
1. (1) |
6.7 (10) |
3.9 (2) |
16.8 (1) |
5.6 (2) |
412.4 (8) |
7.3 (12) |
78 |
1.4 (32) |
72.6 (30) |
4.4 (33) |
4.4 (20) |
5.5 (18) |
2.3 (32) |
1.3 (32) |
79 |
1.8 (236) |
228.2 (240) |
51412.7 (593) |
23.8 (487) |
64. (418) |
108.5 (89) |
20.7 (29) |
80 |
1. (1) |
2.2 (2) |
2.1 (4) |
1.7 (2) |
10.5 (7) |
11.7 (4) |
3.1 (2) |
|
81 |
1. (1) |
1.5 (16) |
6. (13) |
1.4 (19) |
51.8 (1) |
2.8 (11) |
2.5 (14) |
82 |
1. (1) |
3.7 (284) |
8.3 (12) |
22.3 (170) |
11.4 (176) |
2.7 (64) |
16.9 (64) |
83 |
1. (1) |
4. (62) |
8.3 (76) |
16.3 (133) |
17.6 (33) |
4.1 (9) |
89.1 (8) |
84 |
1. (1) |
2.4 (61) |
3.4 (50) |
2.7 (5) |
7.5 (5) |
6. (41) |
1.4 (19) |
85 |
1. (1) |
1.3 (94) |
4.2 (26) |
6.8 (40) |
5.5 (36) |
6. (61) |
4.2 (92) |
86 |
4.3 (11) |
4.1 (60) |
13.2 (78) |
4.4 (3) |
13.7 (11) |
9.5 (1) |
5. (11) |
87 |
1. (1) |
1. (10) |
1.4 (29) |
20.7 (32) |
3.7 (13) |
3.8 (12) |
3.1 (30) |
88 |
1. (1) |
3.2 (1) |
3.4 (3) |
5.5 (3) |
11.6 (20) |
0. (-1) |
4.1 (3) |
89 |
1.4 (370) |
35.3 (773) |
9.3 (642) |
50.3 (213) |
15.8 (484) |
12.8 (781) |
66.1 (782) |
90 |
1. (1) |
2.8 (2) |
2.9 (2) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
91 |
1. (1) |
3. (1) |
1.8 (1) |
4.7 (1) |
4.2 (1) |
0. (-1) |
2.2 (1) |
92 |
1.1 (40) |
36.7 (454) |
14.3 (436) |
76.1 (95) |
14.2 (270) |
11.7 (38) |
5.4 (80) |
93 |
1. (1) |
53.4 (393) |
8. (29) |
27.4 (115) |
9.5 (319) |
3. (9) |
2.3 (5) |
94 |
1.4 (940) |
84.8 (1350) |
18. (1154) |
63.8 (96) |
15.8 (590) |
15.5 (339) |
7.2 (381) |
95 |
1.2 (81) |
4.9 (91) |
6.9 (70) |
12.7 (53) |
18. (67) |
14.3 (1) |
5. (91) |
96 |
1. (1) |
2.1 (9) |
7.6 (21) |
1.4 (2) |
18. (13) |
1.2 (3) |
5.7 (13) |
97 |
1. (1) |
1.9 (5) |
10.5 (13) |
1.1 (12) |
51.3 (13) |
3.3 (12) |
2.5 (5) |
98 |
1. (1) |
173.1 (357) |
564.9 (52) |
1.8 (7) |
12.9 (293) |
3.1 (376) |
33.5 (8) |
99 |
1. (1) |
4.4 (44) |
6. (54) |
15. (49) |
11.5 (54) |
2.5 (24) |
8.2 (8) |
100 |
1. (1) |
2.6 (33) |
1.5 (21) |
10.6 (52) |
11.5 (39) |
6.3 (15) |
2.3 (21) |
|
101 |
1.5 (562) |
75.5 (641) |
173.9 (617) |
25.5 (393) |
27.4 (80) |
10.4 (88) |
76.2 (540) |
102 |
1. (1) |
7. (46) |
4.1 (61) |
3.9 (67) |
16.4 (75) |
1.3 (2) |
104.7 (13) |
103 |
1.4 (891) |
200.5 (678) |
9426.9 (611) |
21. (208) |
221.2 (523) |
13.3 (464) |
37. (1203) |
104 |
1. (1) |
941.7 (463) |
15275. (454) |
21.6 (548) |
188.9 (369) |
20.1 (272) |
32.8 (257) |
105 |
1. (130) |
3975.5 (145) |
172.7 (123) |
4. (83) |
23.7 (83) |
21.1 (70) |
35.4 (51) |
106 |
1. (1) |
44.6 (159) |
2905.5 (351) |
24.4 (272) |
61.7 (288) |
30.9 (239) |
104.5 (36) |
107 |
1. (1) |
777.6 (45) |
36518.9 (5) |
0. (-1) |
34.9 (45) |
0. (-1) |
0. (-1) |
108 |
1. (1) |
21.6 (47) |
288.2 (43) |
1.7 (4) |
12.5 (20) |
2.6 (1) |
5.7 (3) |
109 |
1. (1) |
5.5 (42) |
10.1 (27) |
25.1 (47) |
11.2 (59) |
2.4 (22) |
54.5 (8) |
110 |
1. (1) |
2.5 (11) |
3.4 (16) |
4.4 (11) |
10.3 (14) |
1.3 (2) |
3.5 (7) |
111 |
1. (1) |
2.4 (5) |
4.3 (9) |
5.8 (7) |
9. (19) |
1.2 (2) |
3.7 (6) |
112 |
1. (1) |
3.9 (15) |
69.4 (103) |
2.6 (94) |
11. (27) |
8.9 (92) |
3.2 (94) |
113 |
1. (1) |
23.7 (22) |
35. (29) |
18.4 (8) |
32.6 (9) |
21.5 (6) |
7.6 (25) |
114 |
1. (1) |
1997.4 (22) |
31765.8 (3) |
0. (-1) |
55.5 (27) |
0. (-1) |
0. (-1) |
115 |
1. (1) |
14.7 (42) |
9.8 (259) |
35. (47) |
20.3 (42) |
3.3 (1) |
15.7 (42) |
116 |
1. (1) |
10. (40) |
4.1 (29) |
20. (16) |
11.9 (29) |
0. (-1) |
8.7 (18) |
117 |
1. (1) |
3.2 (18) |
5.9 (73) |
97.4 (27) |
10.3 (68) |
2.2 (53) |
2.7 (12) |
118 |
1.4 (423) |
249. (874) |
14.7 (578) |
70.7 (255) |
15.4 (515) |
2.6 (5) |
5.2 (112) |
119 |
1. (1) |
45.2 (153) |
12.3 (284) |
3.9 (65) |
12.7 (227) |
0. (-1) |
9.4 (196) |
120 |
1.7 (340) |
55.9 (191) |
46.5 (339) |
5. (67) |
65.4 (338) |
13.1 (90) |
9.1 (286) |
|
121 |
1.3 (115) |
2597.8 (169) |
1151.1 (153) |
42.7 (108) |
20.4 (159) |
0. (-1) |
7.2 (197) |
122 |
2.2 (197) |
1873.2 (240) |
7.1 (238) |
58.3 (130) |
20.5 (241) |
3.1 (170) |
5.9 (256) |
123 |
1.3 (265) |
350.5 (634) |
15.8 (385) |
71. (259) |
16.2 (337) |
2.2 (47) |
7.3 (124) |
124 |
1. (1) |
3.6 (65) |
24.1 (25) |
18.2 (25) |
7.2 (58) |
2.9 (33) |
3.6 (41) |
125 |
1.2 (870) |
383.4 (1373) |
19.8 (970) |
62. (1289) |
15.9 (808) |
3.1 (930) |
9.8 (490) |
126 |
1.3 (231) |
66.8 (138) |
544.5 (433) |
37.4 (297) |
55.8 (461) |
7.4 (459) |
15.3 (365) |
127 |
1. (1) |
5.6 (42) |
12.1 (21) |
45.1 (39) |
15.4 (42) |
3.1 (1) |
4.2 (41) |
128 |
1. (1) |
4. (25) |
5.2 (74) |
53.1 (15) |
10.5 (69) |
2.2 (53) |
4. (61) |
129 |
1. (1) |
5.3 (36) |
19.6 (18) |
8.7 (13) |
20.4 (19) |
0. (-1) |
18.4 (15) |
130 |
1. (1) |
2.5 (8) |
4. (9) |
6.6 (8) |
8.9 (14) |
0. (-1) |
3. (8) |
131 |
1.3 (20) |
3.3 (10) |
2.3 (22) |
4.8 (1) |
12. (22) |
0. (-1) |
3. (10) |
132 |
1. (1) |
2.7 (3) |
2.2 (8) |
3.4 (8) |
5.9 (9) |
4.9 (18) |
4.5 (12) |
133 |
1. (1) |
1.2 (1) |
1.8 (1) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
134 |
1. (12) |
3.1 (18) |
26.8 (15) |
32.8 (18) |
40. (11) |
0. (-1) |
4.2 (1) |
135 |
1. (1) |
29.1 (187) |
4879055.9 (170) |
114.8 (57) |
19.5 (231) |
16.7 (241) |
115.4 (200) |
136 |
3.3 (23) |
9.2 (211) |
5.9 (146) |
12.8 (209) |
18.4 (143) |
6.6 (114) |
88.7 (238) |
137 |
1.1 (281) |
9.2 (164) |
14.6 (80) |
78.9 (391) |
36.1 (273) |
10.3 (396) |
109.8 (293) |
138 |
1. (1) |
2.7 (1) |
6.9 (9) |
0.6 (5) |
28.8 (4) |
1.1 (5) |
0.9 (5) |
139 |
4.3 (259) |
9.3 (299) |
13.1 (259) |
122.7 (225) |
9.2 (173) |
6.6 (12) |
99.6 (126) |
140 |
19.2 (34) |
9.1 (133) |
40.1 (34) |
109.8 (34) |
14.8 (63) |
7.2 (135) |
360.1 (31) |
|
141 |
10.8 (759) |
718.9 (434) |
651.2 (860) |
47. (927) |
56.2 (503) |
227.1 (140) |
113.7 (904) |
142 |
1.4 (107) |
2.5 (95) |
4.8 (156) |
2.3 (155) |
4.4 (7) |
2.3 (11) |
13.3 (145) |
143 |
1.7 (100) |
3.5 (200) |
19.9 (90) |
5.6 (195) |
12.4 (642) |
2.2 (9) |
76.5 (620) |
144 |
1.9 (147) |
7. (85) |
13.9 (55) |
3.8 (186) |
11.8 (93) |
8.1 (206) |
18.8 (233) |
145 |
1.3 (168) |
4.9 (41) |
2.8 (156) |
2.4 (155) |
7.5 (7) |
2.3 (11) |
35.6 (147) |
146 |
1. (1) |
1.9 (10) |
5.6 (4) |
4. (11) |
10.2 (33) |
2. (23) |
49.2 (23) |
147 |
1. (1) |
3.8 (13) |
3.3 (18) |
2.3 (55) |
13.6 (29) |
2. (58) |
5.2 (31) |
148 |
10. (146) |
4.7 (83) |
28.1 (148) |
2.6 (165) |
8. (112) |
22.4 (99) |
2.4 (66) |
149 |
1.2 (25) |
4.2 (25) |
43.8 (20) |
3.1 (21) |
39.8 (21) |
12.5 (21) |
5.1 (8) |
150 |
1.3 (152) |
6.4 (429) |
85.8 (146) |
7. (218) |
20.5 (1223) |
24.6 (54) |
4.8 (1195) |
151 |
1. (1) |
3.3 (36) |
80. (56) |
6.9 (1) |
6.2 (30) |
46.1 (5) |
11.2 (14) |
152 |
2. (344) |
2.7 (248) |
13.6 (329) |
10.4 (375) |
30. (375) |
64.6 (177) |
11.3 (375) |
153 |
1.1 (117) |
11.4 (54) |
27.1 (147) |
7.3 (67) |
15. (96) |
4.7 (38) |
3.5 (10) |
154 |
1.3 (109) |
11.4 (164) |
72.1 (110) |
7.2 (164) |
15. (186) |
8.7 (106) |
6.8 (135) |
155 |
1. (1) |
1.2 (7) |
1. (2) |
1.3 (2) |
2.9 (5) |
2.7 (4) |
1.6 (2) |
156 |
1.2 (68) |
2.6 (104) |
11.9 (105) |
4.6 (31) |
18.4 (151) |
1.2 (9) |
1.9 (7) |
157 |
1. (1) |
3.3 (42) |
4.2 (26) |
2.3 (14) |
9.5 (24) |
0.9 (10) |
4.4 (26) |
158 |
1.4 (51) |
2.8 (111) |
11.9 (112) |
2.6 (22) |
18.5 (156) |
1.2 (9) |
2. (7) |
159 |
1. (1) |
3.3 (40) |
4.9 (26) |
2.2 (13) |
9.6 (23) |
0.9 (9) |
6.3 (26) |
160 |
1. (1) |
23.2 (333) |
7.5 (379) |
4.8 (1) |
39.4 (329) |
6.9 (226) |
10. (259) |
|
161 |
1. (1) |
5.4 (53) |
3.4 (98) |
18.8 (90) |
17.6 (20) |
1.9 (10) |
6. (93) |
162 |
1. (1) |
1.5 (24) |
1.9 (28) |
8.1 (7) |
12.7 (24) |
0. (-1) |
2.2 (29) |
163 |
1. (1) |
30.9 (200) |
8.4 (198) |
18. (208) |
76.9 (157) |
16.8 (253) |
34.9 (273) |
164 |
1.3 (16) |
9.9 (394) |
15.3 (316) |
29.6 (315) |
175.6 (214) |
96.5 (35) |
21.4 (70) |
165 |
1. (1) |
13.6 (173) |
7.4 (28) |
4.8 (1) |
39.6 (36) |
4.1 (8) |
4.8 (1) |
166 |
1. (1) |
7.9 (106) |
3.6 (79) |
4.7 (5) |
9.2 (108) |
2.3 (12) |
4.6 (38) |
167 |
1. (1) |
2.1 (3) |
3.4 (64) |
18.9 (56) |
17.6 (20) |
1.9 (10) |
6. (59) |
168 |
1. (1) |
1.5 (12) |
1.9 (28) |
8.1 (7) |
12.6 (24) |
0. (-1) |
2.2 (29) |
169 |
1. (1) |
8.7 (328) |
7.4 (165) |
15.4 (196) |
94.6 (177) |
22. (152) |
34.9 (246) |
170 |
1.3 (60) |
2.5 (11) |
8. (38) |
7.9 (40) |
148.8 (12) |
8.4 (37) |
7. (38) |
171 |
1. (1) |
3.7 (3) |
12.5 (43) |
4.3 (8) |
51.8 (11) |
1.7 (8) |
4.5 (8) |
172 |
1.2 (109) |
3.5 (212) |
6.6 (102) |
17. (188) |
181.6 (200) |
42.3 (62) |
5.7 (102) |
173 |
1.3 (257) |
10.5 (252) |
14.4 (114) |
24.4 (104) |
236.2 (244) |
25.2 (183) |
183.5 (109) |
174 |
1. (1) |
5.1 (48) |
9.6 (22) |
5. (8) |
42.5 (47) |
11.7 (27) |
4.3 (8) |
175 |
1. (1) |
14.1 (209) |
6.2 (35) |
17.5 (193) |
181.6 (205) |
11.6 (148) |
9.6 (113) |
176 |
1. (1) |
6.7 (10) |
9.2 (24) |
8.7 (10) |
236.2 (41) |
6.4 (5) |
11.7 (10) |
177 |
1. (1) |
3.8 (6) |
7.4 (3) |
3.3 (7) |
39.6 (9) |
0. (-1) |
3.6 (7) |
178 |
1. (1) |
3.5 (18) |
3.6 (79) |
2.7 (15) |
60.8 (82) |
0. (-1) |
2.7 (31) |
179 |
3.5 (186) |
6.4 (145) |
12.7 (186) |
11.6 (59) |
220. (136) |
2.2 (119) |
4.4 (86) |
180 |
1.4 (54) |
14.4 (168) |
14. (169) |
17.8 (124) |
236.3 (209) |
5.4 (142) |
6.8 (167) |
|
181 |
1. (1) |
9.1 (26) |
5. (29) |
4.2 (7) |
35.1 (9) |
0. (-1) |
3.7 (7) |
182 |
1. (1) |
5.2 (18) |
3.9 (78) |
3.1 (15) |
75.2 (15) |
0. (-1) |
2.5 (5) |
183 |
3.3 (160) |
6.7 (24) |
22.3 (24) |
12. (91) |
81.4 (124) |
0. (-1) |
12. (24) |
184 |
1.1 (12) |
3.4 (24) |
16.5 (8) |
8.4 (1) |
139.3 (10) |
0. (-1) |
4. (1) |
185 |
1.9 (192) |
515.8 (777) |
142.2 (767) |
35.1 (100) |
140.3 (589) |
43.6 (11) |
13.7 (1050) |
186 |
1. (1) |
1.9 (141) |
2.7 (38) |
2.3 (15) |
7.9 (7) |
1. (22) |
3.5 (19) |
187 |
2.1 (73) |
3.5 (230) |
10. (313) |
9.2 (255) |
12.5 (531) |
3.5 (255) |
4.2 (118) |
188 |
1.2 (170) |
4.7 (46) |
6.2 (151) |
15.6 (276) |
10.9 (368) |
8.2 (147) |
7.7 (116) |
189 |
1.1 (163) |
3.2 (39) |
2.3 (18) |
1.8 (135) |
4.9 (7) |
1.1 (135) |
3.1 (19) |
190 |
1.7 (322) |
5.5 (516) |
17.2 (93) |
3.7 (22) |
14.3 (508) |
1.7 (528) |
3.5 (22) |
191 |
1.3 (73) |
6.9 (167) |
26. (291) |
3.4 (102) |
19.3 (20) |
7.6 (122) |
8.2 (93) |
192 |
8.1 (149) |
1.9 (31) |
7031. (175) |
7.1 (202) |
25.2 (216) |
15.2 (61) |
2.6 (60) |
193 |
1.6 (21) |
5. (12) |
56.2 (20) |
3.1 (40) |
59.9 (32) |
10.5 (24) |
8.6 (8) |
194 |
1.6 (538) |
5. (156) |
74.3 (235) |
21.7 (244) |
14.6 (516) |
5.1 (61) |
6.3 (505) |
195 |
1. (43) |
11.2 (42) |
62.1 (46) |
7. (15) |
10.6 (37) |
43.6 (13) |
12.3 (37) |
196 |
2. (172) |
3.7 (868) |
16.4 (867) |
37.8 (1152) |
31.8 (1368) |
30.7 (997) |
13. (1368) |
197 |
1.7 (81) |
24. (319) |
24.6 (312) |
5.8 (72) |
18.9 (315) |
3. (276) |
6.4 (133) |
198 |
1.2 (78) |
24. (238) |
18086.6 (185) |
5.2 (95) |
19.5 (189) |
5.3 (92) |
1. (298) |
199 |
1.9 (172) |
4.9 (430) |
11.6 (22) |
4.8 (37) |
11.7 (130) |
12.1 (767) |
5.9 (29) |
200 |
1. (1) |
16.3 (85) |
19.3 (124) |
1.9 (47) |
18.7 (168) |
1.5 (35) |
0. (-1) |
|
201 |
2.8 (38) |
5.6 (18) |
40.5 (80) |
1.3 (34) |
20.9 (6) |
0.7 (93) |
4.1 (47) |
202 |
1.2 (75) |
2.9 (111) |
11.5 (112) |
2.8 (10) |
20.2 (156) |
1.2 (9) |
0. (-1) |
203 |
1.6 (55) |
8.2 (13) |
5.2 (65) |
3.6 (31) |
21.1 (71) |
2. (31) |
3.4 (31) |
204 |
1. (1) |
1.7 (102) |
2.5 (221) |
1.5 (31) |
4.9 (140) |
2.9 (83) |
2.2 (18) |
205 |
1. (1) |
2.5 (57) |
1.5 (92) |
0. (-1) |
0. (-1) |
2. (179) |
0. (-1) |
206 |
1. (1) |
2.6 (41) |
3.3 (134) |
0. (-1) |
0. (-1) |
7.3 (69) |
84.2 (135) |
207 |
1. (1) |
2.5 (131) |
1.3 (35) |
0. (-1) |
0. (-1) |
8.5 (69) |
0. (-1) |
208 |
1.1 (174) |
1.3 (195) |
2.4 (144) |
5.5 (155) |
23.7 (150) |
4.4 (29) |
0. (-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.5 Pass/Fail per test file for each CAS system
The following table gives the number of passed integrals and number of failed integrals per test number.
There are 208 tests. Each tests corresponds to one input file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1.7Pass/Fail per test file for each CAS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Test # |
Rubi
| MMA
| Maple
| Maxima
| FriCAS
| Sympy
| Giac
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pass |
Fail |
Pass |
Fail |
Pass |
Fail |
Pass |
Fail |
Pass |
Fail |
Pass |
Fail |
Pass |
Fail |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
175 |
0 |
175 |
0 |
173 |
2 |
164 |
11 |
172 |
3 |
156 |
19 |
165 |
10 |
2 |
33 |
2 |
35 |
0 |
27 |
8 |
15 |
20 |
24 |
11 |
7 |
28 |
13 |
22 |
3 |
13 |
1 |
14 |
0 |
11 |
3 |
8 |
6 |
12 |
2 |
9 |
5 |
8 |
6 |
4 |
48 |
2 |
50 |
0 |
33 |
17 |
24 |
26 |
47 |
3 |
18 |
32 |
38 |
12 |
5 |
279 |
5 |
283 |
1 |
282 |
2 |
235 |
49 |
280 |
4 |
249 |
35 |
255 |
29 |
6 |
3 |
4 |
6 |
1 |
5 |
2 |
3 |
4 |
7 |
0 |
5 |
2 |
5 |
2 |
7 |
7 |
2 |
9 |
0 |
9 |
0 |
7 |
2 |
9 |
0 |
4 |
5 |
9 |
0 |
8 |
113 |
0 |
112 |
1 |
113 |
0 |
107 |
6 |
112 |
1 |
104 |
9 |
109 |
4 |
9 |
376 |
0 |
376 |
0 |
376 |
0 |
371 |
5 |
376 |
0 |
347 |
29 |
374 |
2 |
10 |
705 |
0 |
705 |
0 |
647 |
58 |
542 |
163 |
650 |
55 |
422 |
283 |
564 |
141 |
11 |
100 |
16 |
95 |
21 |
60 |
56 |
19 |
97 |
88 |
28 |
29 |
87 |
17 |
99 |
12 |
8 |
0 |
8 |
0 |
8 |
0 |
7 |
1 |
8 |
0 |
8 |
0 |
8 |
0 |
13 |
1917 |
0 |
1917 |
0 |
1557 |
360 |
963 |
954 |
1602 |
315 |
1173 |
744 |
1258 |
659 |
14 |
3201 |
0 |
3201 |
0 |
2863 |
338 |
1879 |
1322 |
2524 |
677 |
1524 |
1677 |
2330 |
871 |
15 |
158 |
1 |
155 |
4 |
128 |
31 |
21 |
138 |
47 |
112 |
38 |
121 |
39 |
120 |
16 |
34 |
0 |
34 |
0 |
28 |
6 |
12 |
22 |
0 |
34 |
14 |
20 |
28 |
6 |
17 |
78 |
0 |
78 |
0 |
78 |
0 |
19 |
59 |
43 |
35 |
15 |
63 |
35 |
43 |
18 |
35 |
0 |
35 |
0 |
35 |
0 |
0 |
35 |
0 |
35 |
0 |
35 |
0 |
35 |
19 |
1071 |
0 |
1071 |
0 |
755 |
316 |
395 |
676 |
674 |
397 |
970 |
101 |
639 |
432 |
20 |
349 |
0 |
349 |
0 |
246 |
103 |
24 |
325 |
136 |
213 |
106 |
243 |
111 |
238 |
|
21 |
1156 |
0 |
1156 |
0 |
1002 |
154 |
283 |
873 |
853 |
303 |
584 |
572 |
800 |
356 |
22 |
115 |
0 |
114 |
1 |
105 |
10 |
15 |
100 |
30 |
85 |
27 |
88 |
34 |
81 |
23 |
51 |
0 |
51 |
0 |
14 |
37 |
0 |
51 |
14 |
37 |
25 |
26 |
14 |
37 |
24 |
174 |
0 |
174 |
0 |
170 |
4 |
43 |
131 |
121 |
53 |
152 |
22 |
170 |
4 |
25 |
3078 |
0 |
3044 |
34 |
2585 |
493 |
1616 |
1462 |
2370 |
708 |
2625 |
453 |
1988 |
1090 |
26 |
385 |
0 |
383 |
2 |
197 |
188 |
65 |
320 |
213 |
172 |
147 |
238 |
131 |
254 |
27 |
1081 |
0 |
1081 |
0 |
720 |
361 |
215 |
866 |
662 |
419 |
365 |
716 |
490 |
591 |
28 |
46 |
0 |
46 |
0 |
12 |
34 |
0 |
46 |
12 |
34 |
10 |
36 |
11 |
35 |
29 |
594 |
0 |
594 |
0 |
577 |
17 |
206 |
388 |
338 |
256 |
454 |
140 |
418 |
176 |
30 |
454 |
0 |
454 |
0 |
385 |
69 |
136 |
318 |
256 |
198 |
113 |
341 |
234 |
220 |
31 |
298 |
0 |
296 |
2 |
275 |
23 |
107 |
191 |
228 |
70 |
120 |
178 |
208 |
90 |
32 |
143 |
0 |
143 |
0 |
113 |
30 |
93 |
50 |
113 |
30 |
47 |
96 |
104 |
39 |
33 |
2590 |
0 |
2584 |
6 |
2320 |
270 |
1115 |
1475 |
2065 |
525 |
1043 |
1547 |
1592 |
998 |
34 |
2646 |
0 |
2646 |
0 |
2584 |
62 |
1297 |
1349 |
2258 |
388 |
1182 |
1464 |
2076 |
570 |
35 |
958 |
0 |
937 |
21 |
729 |
229 |
179 |
779 |
569 |
389 |
261 |
697 |
268 |
690 |
36 |
123 |
0 |
123 |
0 |
121 |
2 |
67 |
56 |
110 |
13 |
43 |
80 |
87 |
36 |
37 |
143 |
0 |
142 |
1 |
141 |
2 |
12 |
131 |
61 |
82 |
10 |
133 |
47 |
96 |
38 |
400 |
0 |
394 |
6 |
388 |
12 |
217 |
183 |
324 |
76 |
145 |
255 |
317 |
83 |
39 |
1126 |
0 |
1126 |
0 |
1062 |
64 |
395 |
731 |
844 |
282 |
486 |
640 |
739 |
387 |
40 |
412 |
1 |
378 |
35 |
399 |
14 |
60 |
353 |
209 |
204 |
190 |
223 |
148 |
265 |
|
41 |
413 |
0 |
400 |
13 |
376 |
37 |
108 |
305 |
250 |
163 |
139 |
274 |
190 |
223 |
42 |
111 |
0 |
103 |
8 |
111 |
0 |
83 |
28 |
80 |
31 |
52 |
59 |
88 |
23 |
43 |
145 |
0 |
145 |
0 |
142 |
3 |
61 |
84 |
115 |
30 |
89 |
56 |
87 |
58 |
44 |
42 |
0 |
38 |
4 |
40 |
2 |
0 |
42 |
9 |
33 |
6 |
36 |
4 |
38 |
45 |
4 |
0 |
4 |
0 |
4 |
0 |
0 |
4 |
0 |
4 |
0 |
4 |
0 |
4 |
46 |
664 |
0 |
662 |
2 |
496 |
168 |
241 |
423 |
535 |
129 |
289 |
375 |
363 |
301 |
47 |
96 |
0 |
92 |
4 |
49 |
47 |
9 |
87 |
47 |
49 |
44 |
52 |
34 |
62 |
48 |
156 |
0 |
147 |
9 |
137 |
19 |
60 |
96 |
106 |
50 |
69 |
87 |
109 |
47 |
49 |
17 |
0 |
14 |
3 |
2 |
15 |
2 |
15 |
7 |
10 |
0 |
17 |
2 |
15 |
50 |
140 |
0 |
139 |
1 |
136 |
4 |
22 |
118 |
129 |
11 |
67 |
73 |
87 |
53 |
51 |
491 |
3 |
494 |
0 |
489 |
5 |
360 |
134 |
430 |
64 |
432 |
62 |
410 |
84 |
52 |
1007 |
18 |
997 |
28 |
836 |
189 |
292 |
733 |
695 |
330 |
262 |
763 |
413 |
612 |
53 |
98 |
0 |
98 |
0 |
78 |
20 |
64 |
34 |
87 |
11 |
38 |
60 |
56 |
42 |
54 |
93 |
0 |
84 |
9 |
75 |
18 |
62 |
31 |
93 |
0 |
48 |
45 |
49 |
44 |
55 |
766 |
8 |
751 |
23 |
621 |
153 |
462 |
312 |
666 |
108 |
308 |
466 |
346 |
428 |
56 |
193 |
0 |
193 |
0 |
98 |
95 |
96 |
97 |
123 |
70 |
71 |
122 |
101 |
92 |
57 |
456 |
0 |
449 |
7 |
309 |
147 |
158 |
298 |
280 |
176 |
195 |
261 |
197 |
259 |
58 |
249 |
0 |
243 |
6 |
81 |
168 |
61 |
188 |
90 |
159 |
37 |
212 |
58 |
191 |
59 |
288 |
26 |
298 |
16 |
187 |
127 |
238 |
76 |
206 |
108 |
55 |
259 |
157 |
157 |
60 |
249 |
14 |
249 |
14 |
98 |
165 |
179 |
84 |
156 |
107 |
49 |
214 |
49 |
214 |
|
61 |
106 |
2 |
108 |
0 |
25 |
83 |
65 |
43 |
39 |
69 |
15 |
93 |
38 |
70 |
62 |
543 |
4 |
542 |
5 |
309 |
238 |
219 |
328 |
218 |
329 |
130 |
417 |
217 |
330 |
63 |
641 |
0 |
621 |
20 |
338 |
303 |
273 |
368 |
392 |
249 |
119 |
522 |
336 |
305 |
64 |
314 |
0 |
314 |
0 |
236 |
78 |
203 |
111 |
278 |
36 |
110 |
204 |
185 |
129 |
65 |
538 |
0 |
538 |
0 |
442 |
96 |
200 |
338 |
274 |
264 |
98 |
440 |
212 |
326 |
66 |
348 |
0 |
348 |
0 |
264 |
84 |
192 |
156 |
322 |
26 |
99 |
249 |
156 |
192 |
67 |
72 |
0 |
72 |
0 |
47 |
25 |
32 |
40 |
39 |
33 |
32 |
40 |
33 |
39 |
68 |
113 |
0 |
113 |
0 |
113 |
0 |
53 |
60 |
113 |
0 |
26 |
87 |
47 |
66 |
69 |
357 |
0 |
345 |
12 |
245 |
112 |
223 |
134 |
305 |
52 |
93 |
264 |
156 |
201 |
70 |
653 |
0 |
638 |
15 |
562 |
91 |
257 |
396 |
358 |
295 |
85 |
568 |
270 |
383 |
71 |
36 |
0 |
36 |
0 |
34 |
2 |
34 |
2 |
36 |
0 |
20 |
16 |
34 |
2 |
72 |
206 |
2 |
203 |
5 |
178 |
30 |
142 |
66 |
178 |
30 |
4 |
204 |
140 |
68 |
73 |
837 |
0 |
820 |
17 |
635 |
202 |
216 |
621 |
512 |
325 |
123 |
714 |
323 |
514 |
74 |
1560 |
3 |
1519 |
44 |
1380 |
183 |
958 |
605 |
1216 |
347 |
203 |
1360 |
1116 |
447 |
75 |
51 |
0 |
51 |
0 |
50 |
1 |
16 |
35 |
30 |
21 |
4 |
47 |
13 |
38 |
76 |
358 |
0 |
348 |
10 |
289 |
69 |
132 |
226 |
275 |
83 |
60 |
298 |
160 |
198 |
77 |
19 |
0 |
15 |
4 |
12 |
7 |
13 |
6 |
13 |
6 |
8 |
11 |
12 |
7 |
78 |
34 |
0 |
32 |
2 |
5 |
29 |
7 |
27 |
8 |
26 |
1 |
33 |
1 |
33 |
79 |
590 |
4 |
583 |
11 |
521 |
73 |
174 |
420 |
393 |
201 |
61 |
533 |
290 |
304 |
80 |
9 |
0 |
9 |
0 |
9 |
0 |
2 |
7 |
9 |
0 |
5 |
4 |
9 |
0 |
|
81 |
19 |
0 |
19 |
0 |
19 |
0 |
5 |
14 |
15 |
4 |
6 |
13 |
9 |
10 |
82 |
294 |
0 |
294 |
0 |
195 |
99 |
92 |
202 |
93 |
201 |
13 |
281 |
27 |
267 |
83 |
189 |
0 |
187 |
2 |
134 |
55 |
134 |
55 |
133 |
56 |
50 |
139 |
80 |
109 |
84 |
62 |
0 |
62 |
0 |
45 |
17 |
37 |
25 |
39 |
23 |
32 |
30 |
34 |
28 |
85 |
99 |
0 |
99 |
0 |
87 |
12 |
77 |
22 |
91 |
8 |
30 |
69 |
47 |
52 |
86 |
88 |
0 |
88 |
0 |
88 |
0 |
27 |
61 |
32 |
56 |
21 |
67 |
32 |
56 |
87 |
34 |
0 |
34 |
0 |
32 |
2 |
32 |
2 |
34 |
0 |
18 |
16 |
32 |
2 |
88 |
22 |
0 |
22 |
0 |
22 |
0 |
15 |
7 |
21 |
1 |
0 |
22 |
20 |
2 |
89 |
932 |
0 |
923 |
9 |
854 |
78 |
285 |
647 |
443 |
489 |
77 |
855 |
254 |
678 |
90 |
4 |
0 |
4 |
0 |
4 |
0 |
0 |
4 |
0 |
4 |
0 |
4 |
0 |
4 |
91 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
92 |
644 |
0 |
634 |
10 |
634 |
10 |
189 |
455 |
313 |
331 |
61 |
583 |
199 |
445 |
93 |
393 |
0 |
389 |
4 |
236 |
157 |
119 |
274 |
121 |
272 |
7 |
386 |
15 |
378 |
94 |
1541 |
0 |
1534 |
7 |
1532 |
9 |
451 |
1090 |
708 |
833 |
120 |
1421 |
525 |
1016 |
95 |
98 |
0 |
98 |
0 |
98 |
0 |
32 |
66 |
70 |
28 |
15 |
83 |
67 |
31 |
96 |
21 |
0 |
21 |
0 |
21 |
0 |
2 |
19 |
15 |
6 |
2 |
19 |
19 |
2 |
97 |
20 |
0 |
20 |
0 |
20 |
0 |
4 |
16 |
16 |
4 |
5 |
15 |
9 |
11 |
98 |
387 |
0 |
386 |
1 |
265 |
122 |
70 |
317 |
136 |
251 |
13 |
374 |
68 |
319 |
99 |
62 |
1 |
63 |
0 |
58 |
5 |
43 |
20 |
63 |
0 |
26 |
37 |
35 |
28 |
100 |
66 |
0 |
66 |
0 |
36 |
30 |
43 |
23 |
48 |
18 |
32 |
34 |
36 |
30 |
|
101 |
700 |
0 |
700 |
0 |
580 |
120 |
362 |
338 |
452 |
248 |
104 |
596 |
250 |
450 |
102 |
91 |
0 |
90 |
1 |
83 |
8 |
74 |
17 |
83 |
8 |
5 |
86 |
76 |
15 |
103 |
1328 |
0 |
1208 |
120 |
1113 |
215 |
353 |
975 |
910 |
418 |
246 |
1082 |
544 |
784 |
104 |
855 |
0 |
797 |
58 |
780 |
75 |
310 |
545 |
583 |
272 |
174 |
681 |
331 |
524 |
105 |
171 |
0 |
169 |
2 |
122 |
49 |
84 |
87 |
84 |
87 |
44 |
127 |
78 |
93 |
106 |
499 |
0 |
497 |
2 |
408 |
91 |
189 |
310 |
403 |
96 |
81 |
418 |
283 |
216 |
107 |
51 |
0 |
51 |
0 |
40 |
11 |
0 |
51 |
16 |
35 |
0 |
51 |
0 |
51 |
108 |
52 |
0 |
52 |
0 |
37 |
15 |
22 |
30 |
21 |
31 |
8 |
44 |
14 |
38 |
109 |
61 |
0 |
61 |
0 |
58 |
3 |
39 |
22 |
61 |
0 |
27 |
34 |
35 |
26 |
110 |
23 |
0 |
23 |
0 |
23 |
0 |
13 |
10 |
18 |
5 |
5 |
18 |
22 |
1 |
111 |
19 |
0 |
19 |
0 |
19 |
0 |
11 |
8 |
15 |
4 |
4 |
15 |
19 |
0 |
112 |
106 |
0 |
105 |
1 |
103 |
3 |
3 |
103 |
31 |
75 |
1 |
105 |
3 |
103 |
113 |
64 |
0 |
64 |
0 |
63 |
1 |
16 |
48 |
64 |
0 |
11 |
53 |
46 |
18 |
114 |
32 |
0 |
32 |
0 |
25 |
7 |
0 |
32 |
16 |
16 |
0 |
32 |
0 |
32 |
115 |
299 |
0 |
299 |
0 |
225 |
74 |
93 |
206 |
106 |
193 |
16 |
283 |
36 |
263 |
116 |
46 |
0 |
45 |
1 |
42 |
4 |
24 |
22 |
46 |
0 |
20 |
26 |
24 |
22 |
117 |
83 |
0 |
79 |
4 |
51 |
32 |
27 |
56 |
63 |
20 |
35 |
48 |
43 |
40 |
118 |
879 |
0 |
865 |
14 |
735 |
144 |
309 |
570 |
393 |
486 |
30 |
849 |
289 |
590 |
119 |
305 |
1 |
301 |
5 |
267 |
39 |
175 |
131 |
191 |
115 |
2 |
304 |
191 |
115 |
120 |
364 |
1 |
341 |
24 |
331 |
34 |
162 |
203 |
241 |
124 |
35 |
330 |
228 |
137 |
|
121 |
240 |
1 |
225 |
16 |
216 |
25 |
95 |
146 |
145 |
96 |
3 |
238 |
67 |
174 |
122 |
286 |
0 |
273 |
13 |
262 |
24 |
166 |
120 |
232 |
54 |
1 |
285 |
192 |
94 |
123 |
634 |
0 |
634 |
0 |
586 |
48 |
193 |
441 |
299 |
335 |
7 |
627 |
204 |
430 |
124 |
70 |
0 |
70 |
0 |
70 |
0 |
48 |
22 |
49 |
21 |
3 |
67 |
46 |
24 |
125 |
1373 |
0 |
1343 |
30 |
1263 |
110 |
459 |
914 |
728 |
645 |
11 |
1362 |
531 |
842 |
126 |
468 |
2 |
424 |
46 |
431 |
39 |
140 |
330 |
401 |
69 |
19 |
451 |
242 |
228 |
127 |
70 |
0 |
70 |
0 |
53 |
17 |
28 |
42 |
31 |
39 |
7 |
63 |
28 |
42 |
128 |
84 |
0 |
80 |
4 |
50 |
34 |
29 |
55 |
64 |
20 |
35 |
49 |
44 |
40 |
129 |
59 |
0 |
53 |
6 |
41 |
18 |
25 |
34 |
41 |
18 |
2 |
57 |
38 |
21 |
130 |
16 |
0 |
16 |
0 |
16 |
0 |
12 |
4 |
16 |
0 |
0 |
16 |
16 |
0 |
131 |
23 |
0 |
23 |
0 |
23 |
0 |
18 |
5 |
23 |
0 |
0 |
23 |
23 |
0 |
132 |
24 |
0 |
24 |
0 |
24 |
0 |
24 |
0 |
24 |
0 |
9 |
15 |
24 |
0 |
133 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
134 |
27 |
0 |
27 |
0 |
27 |
0 |
11 |
16 |
27 |
0 |
0 |
27 |
12 |
15 |
135 |
254 |
0 |
252 |
2 |
224 |
30 |
159 |
95 |
209 |
45 |
38 |
216 |
152 |
102 |
136 |
294 |
0 |
294 |
0 |
289 |
5 |
230 |
64 |
290 |
4 |
61 |
233 |
282 |
12 |
137 |
397 |
0 |
397 |
0 |
359 |
38 |
291 |
106 |
365 |
32 |
102 |
295 |
222 |
175 |
138 |
9 |
0 |
9 |
0 |
9 |
0 |
1 |
8 |
9 |
0 |
1 |
8 |
1 |
8 |
139 |
254 |
76 |
305 |
25 |
100 |
230 |
139 |
191 |
119 |
211 |
55 |
275 |
76 |
254 |
140 |
140 |
2 |
142 |
0 |
114 |
28 |
58 |
84 |
115 |
27 |
32 |
110 |
63 |
79 |
|
141 |
944 |
6 |
938 |
12 |
907 |
43 |
622 |
328 |
845 |
105 |
392 |
558 |
696 |
254 |
142 |
227 |
0 |
226 |
1 |
217 |
10 |
63 |
164 |
79 |
148 |
91 |
136 |
168 |
59 |
143 |
700 |
3 |
694 |
9 |
554 |
149 |
190 |
513 |
265 |
438 |
172 |
531 |
280 |
423 |
144 |
472 |
2 |
459 |
15 |
378 |
96 |
85 |
389 |
182 |
292 |
155 |
319 |
241 |
233 |
145 |
227 |
0 |
227 |
0 |
215 |
12 |
64 |
163 |
79 |
148 |
92 |
135 |
168 |
59 |
146 |
33 |
0 |
33 |
0 |
30 |
3 |
10 |
23 |
15 |
18 |
11 |
22 |
13 |
20 |
147 |
118 |
0 |
113 |
5 |
78 |
40 |
26 |
92 |
48 |
70 |
31 |
87 |
50 |
68 |
148 |
157 |
9 |
163 |
3 |
144 |
22 |
87 |
79 |
91 |
75 |
84 |
82 |
98 |
68 |
149 |
29 |
2 |
26 |
5 |
30 |
1 |
14 |
17 |
11 |
20 |
9 |
22 |
14 |
17 |
150 |
1301 |
0 |
1279 |
22 |
1200 |
101 |
389 |
912 |
552 |
749 |
395 |
906 |
726 |
575 |
151 |
70 |
0 |
67 |
3 |
69 |
1 |
32 |
38 |
28 |
42 |
23 |
47 |
28 |
42 |
152 |
385 |
0 |
368 |
17 |
203 |
182 |
111 |
274 |
286 |
99 |
66 |
319 |
113 |
272 |
153 |
153 |
0 |
153 |
0 |
133 |
20 |
86 |
67 |
131 |
22 |
42 |
111 |
67 |
86 |
154 |
234 |
0 |
229 |
5 |
228 |
6 |
132 |
102 |
168 |
66 |
78 |
156 |
108 |
126 |
155 |
12 |
0 |
12 |
0 |
6 |
6 |
1 |
11 |
6 |
6 |
3 |
9 |
1 |
11 |
156 |
174 |
0 |
169 |
5 |
139 |
35 |
60 |
114 |
108 |
66 |
19 |
155 |
46 |
128 |
157 |
50 |
0 |
49 |
1 |
37 |
13 |
14 |
36 |
28 |
22 |
3 |
47 |
17 |
33 |
158 |
178 |
0 |
176 |
2 |
147 |
31 |
53 |
125 |
110 |
68 |
14 |
164 |
48 |
130 |
159 |
49 |
0 |
49 |
0 |
36 |
13 |
11 |
38 |
27 |
22 |
3 |
46 |
17 |
32 |
160 |
502 |
0 |
465 |
37 |
341 |
161 |
258 |
244 |
454 |
48 |
94 |
408 |
196 |
306 |
|
161 |
102 |
0 |
101 |
1 |
80 |
22 |
83 |
19 |
78 |
24 |
29 |
73 |
43 |
59 |
162 |
33 |
0 |
33 |
0 |
31 |
2 |
31 |
2 |
33 |
0 |
9 |
24 |
31 |
2 |
163 |
369 |
0 |
369 |
0 |
318 |
51 |
210 |
159 |
304 |
65 |
108 |
261 |
267 |
102 |
164 |
525 |
0 |
501 |
24 |
488 |
37 |
196 |
329 |
366 |
159 |
68 |
457 |
269 |
256 |
165 |
183 |
0 |
181 |
2 |
108 |
75 |
131 |
52 |
150 |
33 |
53 |
130 |
101 |
82 |
166 |
111 |
0 |
111 |
0 |
111 |
0 |
64 |
47 |
111 |
0 |
26 |
85 |
71 |
40 |
167 |
68 |
0 |
68 |
0 |
58 |
10 |
60 |
8 |
60 |
8 |
21 |
47 |
38 |
30 |
168 |
33 |
0 |
33 |
0 |
31 |
2 |
31 |
2 |
33 |
0 |
8 |
25 |
31 |
2 |
169 |
336 |
0 |
335 |
1 |
293 |
43 |
206 |
130 |
283 |
53 |
90 |
246 |
256 |
80 |
170 |
85 |
0 |
84 |
1 |
85 |
0 |
20 |
65 |
67 |
18 |
14 |
71 |
44 |
41 |
171 |
72 |
5 |
71 |
6 |
69 |
8 |
61 |
16 |
64 |
13 |
29 |
48 |
46 |
31 |
172 |
206 |
41 |
247 |
0 |
207 |
40 |
151 |
96 |
209 |
38 |
64 |
183 |
177 |
70 |
173 |
263 |
0 |
263 |
0 |
249 |
14 |
135 |
128 |
246 |
17 |
40 |
223 |
215 |
48 |
174 |
61 |
0 |
60 |
1 |
58 |
3 |
53 |
8 |
61 |
0 |
28 |
33 |
35 |
26 |
175 |
183 |
41 |
224 |
0 |
164 |
60 |
105 |
119 |
177 |
47 |
31 |
193 |
126 |
98 |
176 |
53 |
0 |
53 |
0 |
43 |
10 |
12 |
41 |
50 |
3 |
5 |
48 |
22 |
31 |
177 |
16 |
0 |
16 |
0 |
8 |
8 |
5 |
11 |
12 |
4 |
3 |
13 |
4 |
12 |
178 |
84 |
0 |
80 |
4 |
50 |
34 |
39 |
45 |
63 |
21 |
33 |
51 |
44 |
40 |
179 |
201 |
0 |
192 |
9 |
140 |
61 |
90 |
111 |
142 |
59 |
8 |
193 |
113 |
88 |
180 |
220 |
0 |
220 |
0 |
180 |
40 |
105 |
115 |
211 |
9 |
10 |
210 |
147 |
73 |
|
181 |
29 |
0 |
29 |
0 |
19 |
10 |
12 |
17 |
25 |
4 |
4 |
25 |
8 |
21 |
182 |
83 |
0 |
75 |
8 |
49 |
34 |
49 |
34 |
62 |
21 |
34 |
49 |
43 |
40 |
183 |
175 |
0 |
175 |
0 |
136 |
39 |
92 |
83 |
130 |
45 |
0 |
175 |
106 |
69 |
184 |
27 |
0 |
27 |
0 |
14 |
13 |
10 |
17 |
24 |
3 |
0 |
27 |
14 |
13 |
185 |
1059 |
0 |
1051 |
8 |
936 |
123 |
740 |
319 |
968 |
91 |
263 |
796 |
779 |
280 |
186 |
156 |
0 |
156 |
0 |
109 |
47 |
49 |
107 |
43 |
113 |
45 |
111 |
45 |
111 |
187 |
663 |
0 |
663 |
0 |
506 |
157 |
225 |
438 |
241 |
422 |
160 |
503 |
175 |
488 |
188 |
370 |
1 |
370 |
1 |
249 |
122 |
65 |
306 |
147 |
224 |
86 |
285 |
94 |
277 |
189 |
166 |
0 |
166 |
0 |
112 |
54 |
55 |
111 |
52 |
114 |
50 |
116 |
53 |
113 |
190 |
569 |
0 |
558 |
11 |
476 |
93 |
209 |
360 |
236 |
333 |
109 |
460 |
185 |
384 |
191 |
295 |
1 |
288 |
8 |
197 |
99 |
51 |
245 |
122 |
174 |
72 |
224 |
79 |
217 |
192 |
216 |
27 |
231 |
12 |
196 |
47 |
106 |
137 |
146 |
97 |
74 |
169 |
124 |
119 |
193 |
46 |
3 |
47 |
2 |
48 |
1 |
20 |
29 |
15 |
34 |
8 |
41 |
16 |
33 |
194 |
538 |
0 |
536 |
2 |
508 |
30 |
258 |
280 |
256 |
282 |
138 |
400 |
171 |
367 |
195 |
62 |
0 |
60 |
2 |
61 |
1 |
30 |
32 |
17 |
45 |
9 |
53 |
16 |
46 |
196 |
1378 |
0 |
1353 |
25 |
1100 |
278 |
515 |
863 |
1110 |
268 |
445 |
933 |
728 |
650 |
197 |
361 |
0 |
361 |
0 |
342 |
19 |
238 |
123 |
338 |
23 |
80 |
281 |
257 |
104 |
198 |
300 |
0 |
294 |
6 |
273 |
27 |
227 |
73 |
223 |
77 |
95 |
205 |
29 |
271 |
199 |
935 |
0 |
914 |
21 |
771 |
164 |
451 |
484 |
829 |
106 |
193 |
742 |
527 |
408 |
200 |
190 |
0 |
185 |
5 |
154 |
36 |
60 |
130 |
120 |
70 |
38 |
152 |
45 |
145 |
|
201 |
100 |
0 |
98 |
2 |
74 |
26 |
21 |
79 |
69 |
31 |
1 |
99 |
4 |
96 |
202 |
178 |
0 |
173 |
5 |
103 |
75 |
51 |
127 |
113 |
65 |
14 |
164 |
46 |
132 |
203 |
71 |
0 |
71 |
0 |
53 |
18 |
42 |
29 |
49 |
22 |
32 |
39 |
23 |
48 |
204 |
311 |
0 |
300 |
11 |
179 |
132 |
139 |
172 |
258 |
53 |
151 |
160 |
133 |
178 |
205 |
218 |
0 |
190 |
28 |
154 |
64 |
60 |
158 |
60 |
158 |
106 |
112 |
60 |
158 |
206 |
136 |
0 |
134 |
2 |
118 |
18 |
34 |
102 |
34 |
102 |
50 |
86 |
106 |
30 |
207 |
136 |
0 |
136 |
0 |
104 |
32 |
34 |
102 |
34 |
102 |
50 |
86 |
34 |
102 |
208 |
198 |
0 |
193 |
5 |
144 |
54 |
88 |
110 |
102 |
96 |
36 |
162 |
16 |
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.6 Timing
The command AboluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate
call. In Maple, the command Usage was used as in the following example
cpu_time := Usage(assign ('result_of _int',int(expr,x)),output='realtime'
For all other CAS systems, the elapsed time to complete each integral was found by taking the difference
between the time after the call has completed from the time before the call was made. This was done
using Python’s time.time() call.
All elapsed times shown are in seconds. A time limit of 3 minutes was used for each integral. If the
integrate command did not complete within this time limit, the integral was aborted and considered to
have failed and assigned an F grade. The time used by failed integrals due to time out is not counted in
the final statistics.
1.7 Verification
A verification phase was applied on the result of integration for Rubi and Mathematica. Future version
of this report will implement verification for the other CAS systems. For the integrals whose result was
not run through a verification phase, it is assumed that the antiderivative produced was
correct.
Verification phase has 3 minutes time out. An integral whose result was not verified could still be
correct. Further investigation is needed on those integrals which failed verifications. Such integrals are
marked in the summary table below and also in each integral separate section so they are easy to
identify and locate.
1.8 Important notes about some of the results
1.8.1 Important note about Maxima results
Since these integrals are run in a batch mode, using an automated script, and by using sagemath
(SageMath uses Maxima), then any integral where Maxima needs an interactive response from the user
to answer a question during evaluation of the integral in order to complete the integration, will fail and
is counted as failed.
The exception raised is ValueError. Therefore Maxima result below is lower than what could result if
Maxima was run directly and each question Maxima asks was answered correctly.
The percentage of such failures were not counted for each test file, but for an example, for the Timofeev
test file, there were about 30 such integrals out of total 705, or about 4 percent. This pecrentage can be
higher or lower depending on the specific input test file.
Such integrals can be indentified by looking at the output of the integration in each section for
Maxima. If the output was an exception ValueError then this is most likely due to this
reason.
Maxima integrate was run using SageMath with the following settings set by default
'besselexpand : true''display2d : false''domain : complex''keepfloat : true'
'load(to_poly_solve)'
'load(simplify_sum)'
'load(abs_integrate)' 'load(diag)'
SageMath loading of Maxima abs_integrate was found to cause some problem. So the following code
was added to disable this effect.
from sage.interfaces.maxima_lib import maxima_lib maxima_lib.set('extra_definite_integration_methods', '[]')
maxima_lib.set('extra_integration_methods', '[]')
See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/
for reference.
1.8.2 Important note about FriCAS and Giac/XCAS results
There are Few integrals which failed due to SageMath not able to translate the result back to SageMath
syntax and not because these CAS system were not able to do the integrations.
These will fail With error Exception raised: NotImplementedError
The number of such cases seems to be very small. About 1 or 2 percent of all integrals.
Hopefully the next version of SageMath will have complete translation of FriCAS and XCAS syntax and
I will re-run all the tests again when this happens.
1.8.3 Important note about finding leaf size of antiderivative
For Mathematica, Rubi and Maple, the buildin system function LeafSize is used to find the leaf size of
each antiderivative.
The other CAS systems (SageMath and Sympy) do not have special buildin function for this purpose at
this time. Therefore the leaf size is determined as follows.
For Fricas, Giac and Maxima (all called via sagemath) the following code is used
#see https://stackoverflow.com/questions/25202346/how-to-obtain-leaf-count-expression-size-in-sagedef tree(expr):
if expr.operator() is None:
return expr
else:
return [expr.operator()]+map(tree, expr.operands())
try:
# 1.35 is a fudge factor since this estimate of leaf count is bit lower than
#what it should be compared to Mathematica's
leafCount = round(1.35*len(flatten(tree(anti))))
except Exception as ee:
leafCount =1
For Sympy, called directly from Python, the following code is used
try: # 1.7 is a fudge factor since it is low side from actual leaf count
leafCount = round(1.7*count_ops(anti))
except Exception as ee:
leafCount =1
When these cas systems have a buildin function to find the leaf size of expressions, it will be used
instead, and these tests run again.
1.9 Design of the test system
The following diagram gives a high level view of the current test build system.