4.1 Test file Number [5] 0-Independent-test-suites/Hearn-Problems

4.1.1 Maxima

Integral number [145] \[ \int x \cos (k \csc (x)) \cot (x) \csc (x) \, dx \]

[B]   time = 0.983046 (sec), size = 324 ,normalized size = 24.92 \[ -\frac{{\left (x e^{\left (\frac{4 \, k \cos \left (2 \, x\right ) \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} + \frac{4 \, k \sin \left (2 \, x\right ) \sin \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} + x e^{\left (\frac{4 \, k \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}\right )} e^{\left (-\frac{2 \, k \cos \left (2 \, x\right ) \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac{2 \, k \sin \left (2 \, x\right ) \sin \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac{2 \, k \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} \sin \left (\frac{2 \,{\left (k \cos \left (x\right ) \sin \left (2 \, x\right ) - k \cos \left (2 \, x\right ) \sin \left (x\right ) + k \sin \left (x\right )\right )}}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}{2 \, k} \]

[In]

integrate(x*cos(x)*cos(k/sin(x))/sin(x)^2,x, algorithm="maxima")

[Out]

-1/2*(x*e^(4*k*cos(2*x)*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) + 4*k*sin(2*x)*sin(x)/(cos(2*x)^2 +
sin(2*x)^2 - 2*cos(2*x) + 1)) + x*e^(4*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)))*e^(-2*k*cos(2*x)*
cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) - 2*k*sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x)
+ 1) - 2*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1))*sin(2*(k*cos(x)*sin(2*x) - k*cos(2*x)*sin(x) + k
*sin(x))/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1))/k