Integral number [138] \[ \int (g x)^q \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.329968 (sec), size = 304 ,normalized size = 10.13 \[ \frac{x (g x)^q \left (-b k m n \, _3F_2\left (1,\frac{q}{m}+\frac{1}{m},\frac{q}{m}+\frac{1}{m};\frac{q}{m}+\frac{1}{m}+1,\frac{q}{m}+\frac{1}{m}+1;-\frac{f x^m}{e}\right )+k m \, _2F_1\left (1,\frac{q+1}{m};\frac{m+q+1}{m};-\frac{f x^m}{e}\right ) \left (a q+a+b (q+1) \log \left (c x^n\right )-b n\right )+a q^2 \log \left (d \left (e+f x^m\right )^k\right )+2 a q \log \left (d \left (e+f x^m\right )^k\right )+a \log \left (d \left (e+f x^m\right )^k\right )-a k m q-a k m+b q^2 \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+2 b q \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b k m q \log \left (c x^n\right )-b k m \log \left (c x^n\right )-b n q \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )+2 b k m n\right )}{(q+1)^3} \]
[In]
[Out]
Integral number [144] \[ \int x^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.178429 (sec), size = 292 ,normalized size = 10.43 \[ -\frac{x^3 \left (b e k m (m+3) n \, _3F_2\left (1,\frac{3}{m},\frac{3}{m};1+\frac{3}{m},1+\frac{3}{m};-\frac{f x^m}{e}\right )-27 a e \log \left (d \left (e+f x^m\right )^k\right )-9 a e m \log \left (d \left (e+f x^m\right )^k\right )+9 a f k m x^m \, _2F_1\left (1,\frac{m+3}{m};2+\frac{3}{m};-\frac{f x^m}{e}\right )-27 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-9 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k m (m+3) \left (n-3 \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac{3}{m};\frac{m+3}{m};-\frac{f x^m}{e}\right )+3 b e k m^2 \log \left (c x^n\right )+9 b e k m \log \left (c x^n\right )+9 b e n \log \left (d \left (e+f x^m\right )^k\right )+3 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n-6 b e k m n\right )}{27 e (m+3)} \]
[In]
[Out]
Integral number [145] \[ \int x \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.170561 (sec), size = 292 ,normalized size = 11.23 \[ -\frac{x^2 \left (b e k m (m+2) n \, _3F_2\left (1,\frac{2}{m},\frac{2}{m};1+\frac{2}{m},1+\frac{2}{m};-\frac{f x^m}{e}\right )-8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 a f k m x^m \, _2F_1\left (1,\frac{m+2}{m};2+\frac{2}{m};-\frac{f x^m}{e}\right )-8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k m (m+2) \left (n-2 \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac{2}{m};\frac{m+2}{m};-\frac{f x^m}{e}\right )+2 b e k m^2 \log \left (c x^n\right )+4 b e k m \log \left (c x^n\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )+2 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n-4 b e k m n\right )}{8 e (m+2)} \]
[In]
[Out]
Integral number [146] \[ \int \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.169122 (sec), size = 165 ,normalized size = 6.6 \[ x \left (-b k m n \, _3F_2\left (1,\frac{1}{m},\frac{1}{m};1+\frac{1}{m},1+\frac{1}{m};-\frac{f x^m}{e}\right )+k m \, _2F_1\left (1,\frac{1}{m};1+\frac{1}{m};-\frac{f x^m}{e}\right ) \left (a+b \log \left (c x^n\right )-b n\right )+a \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )-b k m n \log (x)+b k m n\right )-k m x \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )+b k m n x \]
[In]
[Out]
Integral number [148] \[ \int \frac{\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^2} \, dx \]
[B] time = 0.164843 (sec), size = 282 ,normalized size = 10.07 \[ \frac{b e k (m-1) m n \, _3F_2\left (1,-\frac{1}{m},-\frac{1}{m};1-\frac{1}{m},1-\frac{1}{m};-\frac{f x^m}{e}\right )+a e \log \left (d \left (e+f x^m\right )^k\right )-a e m \log \left (d \left (e+f x^m\right )^k\right )+a f k m x^m \, _2F_1\left (1,\frac{m-1}{m};2-\frac{1}{m};-\frac{f x^m}{e}\right )+b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k (m-1) m \left (\log \left (c x^n\right )+n\right ) \, _2F_1\left (1,-\frac{1}{m};\frac{m-1}{m};-\frac{f x^m}{e}\right )-b e k m^2 \log \left (c x^n\right )+b e k m \log \left (c x^n\right )+b e n \log \left (d \left (e+f x^m\right )^k\right )-b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n+2 b e k m n}{e (m-1) x} \]
[In]
[Out]
Integral number [149] \[ \int \frac{\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^3} \, dx \]
[B] time = 0.152721 (sec), size = 292 ,normalized size = 10.43 \[ \frac{b e k (m-2) m n \, _3F_2\left (1,-\frac{2}{m},-\frac{2}{m};1-\frac{2}{m},1-\frac{2}{m};-\frac{f x^m}{e}\right )+8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 a f k m x^m \, _2F_1\left (1,\frac{m-2}{m};2-\frac{2}{m};-\frac{f x^m}{e}\right )+8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k (m-2) m \left (2 \log \left (c x^n\right )+n\right ) \, _2F_1\left (1,-\frac{2}{m};\frac{m-2}{m};-\frac{f x^m}{e}\right )-2 b e k m^2 \log \left (c x^n\right )+4 b e k m \log \left (c x^n\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )-2 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n+4 b e k m n}{8 e (m-2) x^2} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.232955 (sec), size = 266 ,normalized size = 9.17 \[ -\frac{x (d x)^m \left (-b n q \, _3F_2\left (1,\frac{m}{q}+\frac{1}{q},\frac{m}{q}+\frac{1}{q};\frac{m}{q}+\frac{1}{q}+1,\frac{m}{q}+\frac{1}{q}+1;e x^q\right )+q \, _2F_1\left (1,\frac{m+1}{q};\frac{m+q+1}{q};e x^q\right ) \left (a m+a+b (m+1) \log \left (c x^n\right )-b n\right )+a m^2 \log \left (1-e x^q\right )+2 a m \log \left (1-e x^q\right )+a \log \left (1-e x^q\right )-a m q-a q+b m^2 \log \left (c x^n\right ) \log \left (1-e x^q\right )+2 b m \log \left (c x^n\right ) \log \left (1-e x^q\right )+b \log \left (c x^n\right ) \log \left (1-e x^q\right )-b m q \log \left (c x^n\right )-b q \log \left (c x^n\right )-b m n \log \left (1-e x^q\right )-b n \log \left (1-e x^q\right )+2 b n q\right )}{(m+1)^3} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.468 (sec), size = 844 ,normalized size = 29.1 \[ -{\frac{ \left ( dx \right ) ^{m}{x}^{-m}a}{q} \left ( -e \right ) ^{-{\frac{m}{q}}-{q}^{-1}} \left ({\frac{q{x}^{1+m}\ln \left ( 1-e{x}^{q} \right ) }{1+m} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}-{\frac{q{x}^{1+m+q}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) } \right ) }-{\frac{ \left ( dx \right ) ^{m}{x}^{-m}b\ln \left ( c \right ) }{q} \left ( -e \right ) ^{-{\frac{m}{q}}-{q}^{-1}} \left ({\frac{q{x}^{1+m}\ln \left ( 1-e{x}^{q} \right ) }{1+m} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}-{\frac{q{x}^{1+m+q}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) } \right ) }+ \left ({\frac{\ln \left ( -e \right ) \left ( dx \right ) ^{m}{x}^{-m}bn}{{q}^{2}} \left ( -e \right ) ^{-{\frac{m}{q}}-{q}^{-1}} \left ({\frac{q{x}^{m}\ln \left ( 1-e{x}^{q} \right ) }{1+m} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}-{\frac{q{x}^{q+m}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) } \right ) }-{\frac{ \left ( dx \right ) ^{m}{x}^{-m}bn}{q} \left ( -e \right ) ^{-{\frac{m}{q}}-{q}^{-1}} \left ({\frac{q\ln \left ( x \right ){x}^{m}\ln \left ( 1-e{x}^{q} \right ) }{1+m} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}+{\frac{\ln \left ( -e \right ){x}^{m}\ln \left ( 1-e{x}^{q} \right ) }{1+m} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}-{\frac{q{x}^{m}\ln \left ( 1-e{x}^{q} \right ) }{ \left ( 1+m \right ) ^{2}} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}}+{\frac{q{x}^{q+m}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) ^{2}} \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) }-{\frac{q{x}^{q+m}e\ln \left ( x \right ) \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) }-{\frac{{x}^{q+m}e\ln \left ( -e \right ) \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) }+{\frac{q{x}^{q+m}e}{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) }+{\frac{q{x}^{q+m}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) ^{2} \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},1,{\frac{1+m+q}{q}} \right ) }+{\frac{{x}^{q+m}e \left ( -q-m-1 \right ) }{ \left ( 1+m \right ) \left ( 1+m+q \right ) } \left ( -e \right ) ^{{\frac{m}{q}}+{q}^{-1}}{\it LerchPhi} \left ( e{x}^{q},2,{\frac{1+m+q}{q}} \right ) } \right ) } \right ) x \]
[In]
[Out]
Integral number [221] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text{PolyLog}\left (2,e x^q\right ) \, dx \]
[B] time = 0.267 (sec), size = 867 ,normalized size = 4.9 \[ \text{result too large to display} \]
[In]
[Out]
Integral number [222] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text{PolyLog}\left (3,e x^q\right ) \, dx \]
[B] time = 1.089 (sec), size = 1065 ,normalized size = 4.36 \[ \text{result too large to display} \]
[In]
[Out]