Integral number [399] \[ \int \frac{\cos ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.351766 (sec), size = 394 ,normalized size = 15.76 \[ \frac{\frac{24 \cos (c+d x) (a+b \sin (c+d x))}{4 a+3 b \sin (c+d x)-b \sin (3 (c+d x))}-i \text{RootSum}\left [8 \text{$\#$1}^3 a+i \text{$\#$1}^6 b-3 i \text{$\#$1}^4 b+3 i \text{$\#$1}^2 b-i b\& ,\frac{-2 \text{$\#$1}^3 a \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1} a \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-4 i \text{$\#$1}^3 a \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )-i \text{$\#$1}^4 b \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-6 i \text{$\#$1}^2 b \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-i b \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1}^4 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+12 \text{$\#$1}^2 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+4 i \text{$\#$1} a \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+2 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )}{-4 i \text{$\#$1}^2 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} b}\& \right ]}{18 a b d} \]
[In]
[Out]
Integral number [400] \[ \int \frac{\cos ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.245492 (sec), size = 273 ,normalized size = 10.92 \[ \frac{\frac{12 \sin (2 (c+d x))}{4 a+3 b \sin (c+d x)-b \sin (3 (c+d x))}-i \text{RootSum}\left [8 \text{$\#$1}^3 a+i \text{$\#$1}^6 b-3 i \text{$\#$1}^4 b+3 i \text{$\#$1}^2 b-i b\& ,\frac{-i \text{$\#$1}^4 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-6 i \text{$\#$1}^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-i \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1}^4 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+12 \text{$\#$1}^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )}{-4 i \text{$\#$1}^2 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} b}\& \right ]}{18 a d} \]
[In]
[Out]
Integral number [401] \[ \int \frac{1}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.459565 (sec), size = 502 ,normalized size = 31.38 \[ \frac{-\frac{12 b \cos (c+d x) (a \cos (2 (c+d x))-3 a+2 b \sin (c+d x))}{(a-b) (a+b) (4 a+3 b \sin (c+d x)-b \sin (3 (c+d x)))}+\frac{i \text{RootSum}\left [8 \text{$\#$1}^3 a+i \text{$\#$1}^6 b-3 i \text{$\#$1}^4 b+3 i \text{$\#$1}^2 b-i b\& ,\frac{12 i \text{$\#$1}^2 a^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-24 \text{$\#$1}^2 a^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )-2 \text{$\#$1}^3 a b \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1} a b \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-4 i \text{$\#$1}^3 a b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )-i \text{$\#$1}^4 b^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-6 i \text{$\#$1}^2 b^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )-i b^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1}^4 b^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+12 \text{$\#$1}^2 b^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+4 i \text{$\#$1} a b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+2 b^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )}{-4 i \text{$\#$1}^2 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} b}\& \right ]}{a^2-b^2}}{18 a d} \]
[In]
[Out]
Integral number [402] \[ \int \frac{\sec ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 1.59132 (sec), size = 845 ,normalized size = 33.8 \[ \frac{-\frac{i b \text{RootSum}\left [i b \text{$\#$1}^6-3 i b \text{$\#$1}^4+8 a \text{$\#$1}^3+3 i b \text{$\#$1}^2-i b\& ,\frac{2 b^3 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^4+16 a^2 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^4-i b^3 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^4-8 i a^2 b \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^4-20 i a^3 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^3-16 i a b^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^3-10 a^3 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^3-8 a b^2 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^3+12 b^3 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^2-120 a^2 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}^2-6 i b^3 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^2+60 i a^2 b \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}^2+20 i a^3 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}+16 i a b^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right ) \text{$\#$1}+10 a^3 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}+8 a b^2 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right ) \text{$\#$1}+2 b^3 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )+16 a^2 b \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )-i b^3 \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right )-8 i a^2 b \log \left (\text{$\#$1}^2-2 \cos (c+d x) \text{$\#$1}+1\right )}{b \text{$\#$1}^5-2 b \text{$\#$1}^3-4 i a \text{$\#$1}^2+b \text{$\#$1}}\& \right ]}{a \left (a^2-b^2\right )^2}+\frac{18 \sin \left (\frac{1}{2} (c+d x)\right )}{(a+b)^2 \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{18 \sin \left (\frac{1}{2} (c+d x)\right )}{(a-b)^2 \left (\cos \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{12 b \cos (c+d x) \left (-2 a^3-7 b^2 a+3 b^2 \cos (2 (c+d x)) a+2 b \left (2 a^2+b^2\right ) \sin (c+d x)\right )}{a (a-b)^2 (a+b)^2 (4 a+3 b \sin (c+d x)-b \sin (3 (c+d x)))}}{18 d} \]
[In]
[Out]
Integral number [403] \[ \int \frac{\sec ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 1.70294 (sec), size = 1158 ,normalized size = 46.32 \[ \text{result too large to display} \]
[In]
[Out]
Integral number [399] \[ \int \frac{\cos ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.244 (sec), size = 550 ,normalized size = 22. \[ -{\frac{2}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{3\,bd} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{8}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{4}{3\,bd} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{3\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{3\,bd} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{9\,abd}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{4}b+{{\it \_R}}^{3}a+{\it \_R}\,a+b}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [400] \[ \int \frac{\cos ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.247 (sec), size = 236 ,normalized size = 9.44 \[ -{\frac{2}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{3\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2}{9\,da}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{4}+1}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [401] \[ \int \frac{1}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.198 (sec), size = 658 ,normalized size = 41.12 \[{\frac{2\,{b}^{2}}{3\,da \left ({a}^{2}-{b}^{2} \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}-{\frac{2\,b}{3\,d \left ({a}^{2}-{b}^{2} \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{8\,{b}^{2}}{3\,da \left ({a}^{2}-{b}^{2} \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{8\,b}{3\,d \left ({a}^{2}-{b}^{2} \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}-{\frac{2\,{b}^{2}}{3\,da \left ({a}^{2}-{b}^{2} \right ) }\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{2\,b}{3\,d \left ({a}^{2}-{b}^{2} \right ) } \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}a+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+8\,b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+3\, \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+a \right ) ^{-1}}+{\frac{1}{9\,da \left ({a}^{2}-{b}^{2} \right ) }\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{ \left ( 3\,{a}^{2}-2\,{b}^{2} \right ){{\it \_R}}^{4}-2\,{{\it \_R}}^{3}ab+6\,{{\it \_R}}^{2}{a}^{2}-2\,{\it \_R}\,ab+3\,{a}^{2}-2\,{b}^{2}}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [402] \[ \int \frac{\sec ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.269 (sec), size = 1276 ,normalized size = 51.04 \[ \text{result too large to display} \]
[In]
[Out]
Integral number [403] \[ \int \frac{\sec ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.323 (sec), size = 1549 ,normalized size = 61.96 \[ \text{result too large to display} \]
[In]
[Out]