3.869 \(\int \frac{\sqrt{1+x^2}}{\sqrt{1-x^4}} \, dx\)

Optimal. Leaf size=2 \[ \sin ^{-1}(x) \]

[Out]

ArcSin[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0013687, antiderivative size = 2, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {26, 216} \[ \sin ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x^2]/Sqrt[1 - x^4],x]

[Out]

ArcSin[x]

Rule 26

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(j_))^(p_.), x_Symbol] :> Dist[(-(b^2/d))^m, Int[
u/(a - b*x^n)^m, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[j, 2*n] && EqQ[p, -m] && EqQ[b^2*c + a^2*d,
0] && GtQ[a, 0] && LtQ[d, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{1+x^2}}{\sqrt{1-x^4}} \, dx &=\int \frac{1}{\sqrt{1-x^2}} \, dx\\ &=\sin ^{-1}(x)\\ \end{align*}

Mathematica [B]  time = 0.0254332, size = 32, normalized size = 16. \[ -\tan ^{-1}\left (\frac{x \sqrt{x^2+1} \sqrt{1-x^4}}{x^4-1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x^2]/Sqrt[1 - x^4],x]

[Out]

-ArcTan[(x*Sqrt[1 + x^2]*Sqrt[1 - x^4])/(-1 + x^4)]

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 29, normalized size = 14.5 \begin{align*}{\arcsin \left ( x \right ) \sqrt{-{x}^{4}+1}{\frac{1}{\sqrt{{x}^{2}+1}}}{\frac{1}{\sqrt{-{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)^(1/2)/(-x^4+1)^(1/2),x)

[Out]

1/(x^2+1)^(1/2)*(-x^4+1)^(1/2)/(-x^2+1)^(1/2)*arcsin(x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} + 1}}{\sqrt{-x^{4} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2 + 1)/sqrt(-x^4 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.47706, size = 66, normalized size = 33. \begin{align*} -\arctan \left (\frac{\sqrt{-x^{4} + 1} \sqrt{x^{2} + 1}}{x^{3} + x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="fricas")

[Out]

-arctan(sqrt(-x^4 + 1)*sqrt(x^2 + 1)/(x^3 + x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} + 1}}{\sqrt{- \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)**(1/2)/(-x**4+1)**(1/2),x)

[Out]

Integral(sqrt(x**2 + 1)/sqrt(-(x - 1)*(x + 1)*(x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} + 1}}{\sqrt{-x^{4} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2 + 1)/sqrt(-x^4 + 1), x)