3.829 \(\int \frac{\sinh ^3(x)}{a+b \sinh (x)+c \sinh ^2(x)} \, dx\)

Optimal. Leaf size=363 \[ \frac{\sqrt{2} \left (\frac{b^3}{\sqrt{4 a c-b^2}}+i \left (\frac{3 i a b c}{\sqrt{4 a c-b^2}}-a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{4 a c-b^2}-i b \tanh \left (\frac{x}{2}\right )+2 i c}{\sqrt{2} \sqrt{i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}\right )}{c^2 \sqrt{i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}-\frac{\sqrt{2} \left (\frac{b^3}{\sqrt{4 a c-b^2}}-i \left (-\frac{3 i a b c}{\sqrt{4 a c-b^2}}-a c+b^2\right )\right ) \tan ^{-1}\left (\frac{2 i c-\tanh \left (\frac{x}{2}\right ) \left (\sqrt{4 a c-b^2}+i b\right )}{\sqrt{2} \sqrt{-i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}\right )}{c^2 \sqrt{-i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}-\frac{b x}{c^2}+\frac{\cosh (x)}{c} \]

[Out]

-((b*x)/c^2) + (Sqrt[2]*(b^3/Sqrt[-b^2 + 4*a*c] + I*(b^2 - a*c + ((3*I)*a*b*c)/Sqrt[-b^2 + 4*a*c]))*ArcTan[((2
*I)*c - I*b*Tanh[x/2] + Sqrt[-b^2 + 4*a*c]*Tanh[x/2])/(Sqrt[2]*Sqrt[b^2 - 2*(a - c)*c + I*b*Sqrt[-b^2 + 4*a*c]
])])/(c^2*Sqrt[b^2 - 2*(a - c)*c + I*b*Sqrt[-b^2 + 4*a*c]]) - (Sqrt[2]*(b^3/Sqrt[-b^2 + 4*a*c] - I*(b^2 - a*c
- ((3*I)*a*b*c)/Sqrt[-b^2 + 4*a*c]))*ArcTan[((2*I)*c - (I*b + Sqrt[-b^2 + 4*a*c])*Tanh[x/2])/(Sqrt[2]*Sqrt[b^2
 - 2*(a - c)*c - I*b*Sqrt[-b^2 + 4*a*c]])])/(c^2*Sqrt[b^2 - 2*(a - c)*c - I*b*Sqrt[-b^2 + 4*a*c]]) + Cosh[x]/c

________________________________________________________________________________________

Rubi [A]  time = 4.67652, antiderivative size = 363, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {3256, 2638, 3292, 2660, 618, 204} \[ \frac{\sqrt{2} \left (\frac{b^3}{\sqrt{4 a c-b^2}}+i \left (\frac{3 i a b c}{\sqrt{4 a c-b^2}}-a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{4 a c-b^2}-i b \tanh \left (\frac{x}{2}\right )+2 i c}{\sqrt{2} \sqrt{i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}\right )}{c^2 \sqrt{i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}-\frac{\sqrt{2} \left (\frac{b^3}{\sqrt{4 a c-b^2}}-i \left (-\frac{3 i a b c}{\sqrt{4 a c-b^2}}-a c+b^2\right )\right ) \tan ^{-1}\left (\frac{2 i c-\tanh \left (\frac{x}{2}\right ) \left (\sqrt{4 a c-b^2}+i b\right )}{\sqrt{2} \sqrt{-i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}\right )}{c^2 \sqrt{-i b \sqrt{4 a c-b^2}-2 c (a-c)+b^2}}-\frac{b x}{c^2}+\frac{\cosh (x)}{c} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[x]^3/(a + b*Sinh[x] + c*Sinh[x]^2),x]

[Out]

-((b*x)/c^2) + (Sqrt[2]*(b^3/Sqrt[-b^2 + 4*a*c] + I*(b^2 - a*c + ((3*I)*a*b*c)/Sqrt[-b^2 + 4*a*c]))*ArcTan[((2
*I)*c - I*b*Tanh[x/2] + Sqrt[-b^2 + 4*a*c]*Tanh[x/2])/(Sqrt[2]*Sqrt[b^2 - 2*(a - c)*c + I*b*Sqrt[-b^2 + 4*a*c]
])])/(c^2*Sqrt[b^2 - 2*(a - c)*c + I*b*Sqrt[-b^2 + 4*a*c]]) - (Sqrt[2]*(b^3/Sqrt[-b^2 + 4*a*c] - I*(b^2 - a*c
- ((3*I)*a*b*c)/Sqrt[-b^2 + 4*a*c]))*ArcTan[((2*I)*c - (I*b + Sqrt[-b^2 + 4*a*c])*Tanh[x/2])/(Sqrt[2]*Sqrt[b^2
 - 2*(a - c)*c - I*b*Sqrt[-b^2 + 4*a*c]])])/(c^2*Sqrt[b^2 - 2*(a - c)*c - I*b*Sqrt[-b^2 + 4*a*c]]) + Cosh[x]/c

Rule 3256

Int[sin[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Int[ExpandTrig[sin[d + e*x]^m*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p, x],
 x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3292

Int[((A_) + (B_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)] + (c_.)*sin[(d_.) + (e_.)*(x
_)]^2), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Dist[B + (b*B - 2*A*c)/q, Int[1/(b + q + 2*c*Sin[d + e*x
]), x], x] + Dist[B - (b*B - 2*A*c)/q, Int[1/(b - q + 2*c*Sin[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e, A, B
}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sinh ^3(x)}{a+b \sinh (x)+c \sinh ^2(x)} \, dx &=i \int \left (\frac{i b}{c^2}-\frac{i \sinh (x)}{c}+\frac{-i a b-i b^2 \left (1-\frac{a c}{b^2}\right ) \sinh (x)}{c^2 \left (a+b \sinh (x)+c \sinh ^2(x)\right )}\right ) \, dx\\ &=-\frac{b x}{c^2}+\frac{i \int \frac{-i a b-i b^2 \left (1-\frac{a c}{b^2}\right ) \sinh (x)}{a+b \sinh (x)+c \sinh ^2(x)} \, dx}{c^2}+\frac{\int \sinh (x) \, dx}{c}\\ &=-\frac{b x}{c^2}+\frac{\cosh (x)}{c}-\frac{\left (i \left (b^2-a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \int \frac{1}{-i b-\sqrt{-b^2+4 a c}-2 i c \sinh (x)} \, dx}{c^2}+\frac{\left (i \left (-b^2+a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \int \frac{1}{-i b+\sqrt{-b^2+4 a c}-2 i c \sinh (x)} \, dx}{c^2}\\ &=-\frac{b x}{c^2}+\frac{\cosh (x)}{c}-\frac{\left (2 i \left (b^2-a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-i b-\sqrt{-b^2+4 a c}-4 i c x-\left (-i b-\sqrt{-b^2+4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{c^2}+\frac{\left (2 i \left (-b^2+a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-i b+\sqrt{-b^2+4 a c}-4 i c x-\left (-i b+\sqrt{-b^2+4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{c^2}\\ &=-\frac{b x}{c^2}+\frac{\cosh (x)}{c}+\frac{\left (4 i \left (b^2-a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-8 \left (b^2-2 (a-c) c-i b \sqrt{-b^2+4 a c}\right )-x^2} \, dx,x,-4 i c+2 \left (i b+\sqrt{-b^2+4 a c}\right ) \tanh \left (\frac{x}{2}\right )\right )}{c^2}-\frac{\left (4 i \left (-b^2+a c+\frac{i b^3}{\sqrt{-b^2+4 a c}}-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-8 \left (b^2-2 (a-c) c+i b \sqrt{-b^2+4 a c}\right )-x^2} \, dx,x,-4 i c+2 \left (i b-\sqrt{-b^2+4 a c}\right ) \tanh \left (\frac{x}{2}\right )\right )}{c^2}\\ &=-\frac{b x}{c^2}+\frac{\sqrt{2} \left (\frac{b^3}{\sqrt{-b^2+4 a c}}+i \left (b^2-a c+\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \tan ^{-1}\left (\frac{2 i c-\left (i b-\sqrt{-b^2+4 a c}\right ) \tanh \left (\frac{x}{2}\right )}{\sqrt{2} \sqrt{b^2-2 (a-c) c+i b \sqrt{-b^2+4 a c}}}\right )}{c^2 \sqrt{b^2-2 (a-c) c+i b \sqrt{-b^2+4 a c}}}-\frac{\sqrt{2} \left (\frac{b^3}{\sqrt{-b^2+4 a c}}-i \left (b^2-a c-\frac{3 i a b c}{\sqrt{-b^2+4 a c}}\right )\right ) \tan ^{-1}\left (\frac{2 i c-\left (i b+\sqrt{-b^2+4 a c}\right ) \tanh \left (\frac{x}{2}\right )}{\sqrt{2} \sqrt{b^2-2 (a-c) c-i b \sqrt{-b^2+4 a c}}}\right )}{c^2 \sqrt{b^2-2 (a-c) c-i b \sqrt{-b^2+4 a c}}}+\frac{\cosh (x)}{c}\\ \end{align*}

Mathematica [A]  time = 0.804816, size = 326, normalized size = 0.9 \[ \frac{\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}+3 a b c-b^3\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b\right )+2 c}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a-c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b \sqrt{b^2-4 a c}+2 c (a-c)-b^2}}+\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}-3 a b c+b^3\right ) \tan ^{-1}\left (\frac{2 c-\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b\right )}{\sqrt{2} \sqrt{-b \sqrt{b^2-4 a c}+2 c (a-c)-b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{-b \sqrt{b^2-4 a c}+2 c (a-c)-b^2}}-b x+c \cosh (x)}{c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[x]^3/(a + b*Sinh[x] + c*Sinh[x]^2),x]

[Out]

(-(b*x) + (Sqrt[2]*(-b^3 + 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(2*c + (-b + Sqrt[b
^2 - 4*a*c])*Tanh[x/2])/Sqrt[-2*b^2 + 4*(a - c)*c + 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*
(a - c)*c + b*Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^3 - 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*A
rcTan[(2*c - (b + Sqrt[b^2 - 4*a*c])*Tanh[x/2])/(Sqrt[2]*Sqrt[-b^2 + 2*(a - c)*c - b*Sqrt[b^2 - 4*a*c]])])/(Sq
rt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*(a - c)*c - b*Sqrt[b^2 - 4*a*c]]) + c*Cosh[x])/c^2

________________________________________________________________________________________

Maple [C]  time = 0.049, size = 144, normalized size = 0.4 \begin{align*}{\frac{1}{c} \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) ^{-1}}-{\frac{b}{{c}^{2}}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) }+{\frac{1}{{c}^{2}}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{4}-2\,b{{\it \_Z}}^{3}+ \left ( -2\,a+4\,c \right ){{\it \_Z}}^{2}+2\,b{\it \_Z}+a \right ) }{\frac{-{{\it \_R}}^{2}ab+2\, \left ( -ac+{b}^{2} \right ){\it \_R}+ab}{2\,{{\it \_R}}^{3}a-3\,b{{\it \_R}}^{2}-2\,{\it \_R}\,a+4\,c{\it \_R}+b}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -{\it \_R} \right ) }}-{\frac{1}{c} \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) ^{-1}}+{\frac{b}{{c}^{2}}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(x)^3/(a+b*sinh(x)+c*sinh(x)^2),x)

[Out]

1/c/(tanh(1/2*x)+1)-b/c^2*ln(tanh(1/2*x)+1)+1/c^2*sum((-_R^2*a*b+2*(-a*c+b^2)*_R+a*b)/(2*_R^3*a-3*_R^2*b-2*_R*
a+4*_R*c+b)*ln(tanh(1/2*x)-_R),_R=RootOf(a*_Z^4-2*b*_Z^3+(-2*a+4*c)*_Z^2+2*b*_Z+a))-1/c/(tanh(1/2*x)-1)+b/c^2*
ln(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left (2 \, b x e^{x} - c e^{\left (2 \, x\right )} - c\right )} e^{\left (-x\right )}}{2 \, c^{2}} - \frac{1}{8} \, \int -\frac{16 \,{\left (2 \, a b e^{\left (2 \, x\right )} +{\left (b^{2} - a c\right )} e^{\left (3 \, x\right )} -{\left (b^{2} - a c\right )} e^{x}\right )}}{c^{3} e^{\left (4 \, x\right )} + 2 \, b c^{2} e^{\left (3 \, x\right )} - 2 \, b c^{2} e^{x} + c^{3} + 2 \,{\left (2 \, a c^{2} - c^{3}\right )} e^{\left (2 \, x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)^3/(a+b*sinh(x)+c*sinh(x)^2),x, algorithm="maxima")

[Out]

-1/2*(2*b*x*e^x - c*e^(2*x) - c)*e^(-x)/c^2 - 1/8*integrate(-16*(2*a*b*e^(2*x) + (b^2 - a*c)*e^(3*x) - (b^2 -
a*c)*e^x)/(c^3*e^(4*x) + 2*b*c^2*e^(3*x) - 2*b*c^2*e^x + c^3 + 2*(2*a*c^2 - c^3)*e^(2*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 9.06185, size = 13673, normalized size = 37.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)^3/(a+b*sinh(x)+c*sinh(x)^2),x, algorithm="fricas")

[Out]

-1/2*(2*b*x*cosh(x) - c*cosh(x)^2 - sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*
a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c + (4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a
^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6
*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 1
2*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*
a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4))*log(2*a^5
*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 - 4*(a^6*b^2 + 2*a^4*b^4)*c + sqrt(2)*(12*a^4*b*c^5 - (20*a^5*b + 31*a^3*b^3)
*c^4 + (8*a^6*b + 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 + 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 + 2*a^2*b^
7 + b^9)*c + (12*a^2*b*c^9 - 7*(4*a^3*b + a*b^3)*c^8 + (20*a^4*b + 27*a^2*b^3 + b^5)*c^7 - (4*a^5*b + 13*a^3*b
^3 + 9*a*b^5)*c^6 + (a^4*b^3 + 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a
^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(
4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*
b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)
*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c + (4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^
4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^
4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2
)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c
^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)) + 4*(3*a^5*b*c^3 - 2*(a^6
*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5*b^3 +
 a^3*b^5)*c)*sinh(x) + 2*(4*a^4*c^7 - (8*a^5 + a^3*b^2)*c^6 + 2*(2*a^6 + 3*a^4*b^2)*c^5 - (a^5*b^2 + a^3*b^4)*
c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*
b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b
^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)
*c^8))) + sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(
2*a^3*b^2 + 3*a*b^4)*c + (4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(
a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2
*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2
*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a
*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4))*log(2*a^5*b^4 + 2*a^3*b^6 + 6*a^5*b
^2*c^2 - 4*(a^6*b^2 + 2*a^4*b^4)*c - sqrt(2)*(12*a^4*b*c^5 - (20*a^5*b + 31*a^3*b^3)*c^4 + (8*a^6*b + 33*a^4*b
^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 + 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 + 2*a^2*b^7 + b^9)*c + (12*a^2*b*c^9
 - 7*(4*a^3*b + a*b^3)*c^8 + (20*a^4*b + 27*a^2*b^3 + b^5)*c^7 - (4*a^5*b + 13*a^3*b^3 + 9*a*b^5)*c^6 + (a^4*b
^3 + 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 +
2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*
c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*
b^2 + 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*
b^4)*c + (4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*
b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a
^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2
*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 +
b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)) + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5
*b^3 + a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*sinh(x) + 2*(
4*a^4*c^7 - (8*a^5 + a^3*b^2)*c^6 + 2*(2*a^6 + 3*a^4*b^2)*c^5 - (a^5*b^2 + a^3*b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^
2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*
(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a
^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8))) - sqrt(2)*(c^2*cos
h(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c - (
4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10
 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3
*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4
)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 +
 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4))*log(2*a^5*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 - 4*(a^6*b^2 + 2*a^
4*b^4)*c + sqrt(2)*(12*a^4*b*c^5 - (20*a^5*b + 31*a^3*b^3)*c^4 + (8*a^6*b + 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(
2*a^5*b^3 + 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 + 2*a^2*b^7 + b^9)*c - (12*a^2*b*c^9 - 7*(4*a^3*b + a*b^3)*c^8
 + (20*a^4*b + 27*a^2*b^3 + b^5)*c^7 - (4*a^5*b + 13*a^3*b^3 + 9*a*b^5)*c^6 + (a^4*b^3 + 2*a^2*b^5 + b^7)*c^5)
*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4
+ 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*
c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8
)))*sqrt(-(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c - (4*a*c^7 - (8*a^2
 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4
 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b
^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5
+ 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*
b^2)*c^5 - (a^2*b^2 + b^4)*c^4)) + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*cosh(x)
 + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*sinh(x) - 2*(4*a^4*c^7 - (8*a^5 + a^3*b
^2)*c^6 + 2*(2*a^6 + 3*a^4*b^2)*c^5 - (a^5*b^2 + a^3*b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c
^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a
*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^
5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8))) + sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqrt(-
(a^2*b^4 + b^6 - 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c - (4*a*c^7 - (8*a^2 + b^2)*c^
6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5
*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*
a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^
2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 -
 (a^2*b^2 + b^4)*c^4))*log(2*a^5*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 - 4*(a^6*b^2 + 2*a^4*b^4)*c - sqrt(2)*(12*a^4
*b*c^5 - (20*a^5*b + 31*a^3*b^3)*c^4 + (8*a^6*b + 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 + 5*a^3*b^5 + 3*
a*b^7)*c^2 + (a^4*b^5 + 2*a^2*b^7 + b^9)*c - (12*a^2*b*c^9 - 7*(4*a^3*b + a*b^3)*c^8 + (20*a^4*b + 27*a^2*b^3
+ b^5)*c^7 - (4*a^5*b + 13*a^3*b^3 + 9*a*b^5)*c^6 + (a^4*b^3 + 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 + 2*a^2*b^
8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5
*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b
^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 + b^6 -
 2*a^3*c^3 + (2*a^4 + 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 + 3*a*b^4)*c - (4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3
*a*b^2)*c^5 - (a^2*b^2 + b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b^4
)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a^2
 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c^9
 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 - (8*a^2 + b^2)*c^6 + 2*(2*a^3 + 3*a*b^2)*c^5 - (a^2*b^2 + b^4)
*c^4)) + 4*(3*a^5*b*c^3 - 2*(a^6*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 - 2*(a^6
*b + 2*a^4*b^3)*c^2 + (a^5*b^3 + a^3*b^5)*c)*sinh(x) - 2*(4*a^4*c^7 - (8*a^5 + a^3*b^2)*c^6 + 2*(2*a^6 + 3*a^4
*b^2)*c^5 - (a^5*b^2 + a^3*b^4)*c^4)*sqrt(-(a^4*b^6 + 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 - 12*(a^5*b^2 + 2*a^3*b
^4)*c^3 + 2*(2*a^6*b^2 + 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 + 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 - (16*a
^2 + b^2)*c^12 + 12*(2*a^3 + a*b^2)*c^11 - 2*(8*a^4 + 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 + 3*a^3*b^2 + 2*a*b^4)*c
^9 - (a^4*b^2 + 2*a^2*b^4 + b^6)*c^8))) - c*sinh(x)^2 + 2*(b*x - c*cosh(x))*sinh(x) - c)/(c^2*cosh(x) + c^2*si
nh(x))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)**3/(a+b*sinh(x)+c*sinh(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)^3/(a+b*sinh(x)+c*sinh(x)^2),x, algorithm="giac")

[Out]

sage0*x