3 Listing of integrals solved by CAS which has no known antiderivatives

 3.1 Test file Number [5] 0_Independent_test_suites/Hearn_Problems^^E^^L

3.1 Test file Number [5] 0_Independent_test_suites/Hearn_Problems^^E^^L

3.1.1 Mathematica

Integral number [281] \[ \int \left (\sqrt{9-4 \sqrt{2}} x-\sqrt{2} \sqrt{1+4 x+2 x^2+x^4}\right ) \, dx \]

[B]   time = 6.07292 (sec), size = 3168 ,normalized size = 66. \[ \text{Result too large to show} \]

[In]  Integrate[Sqrt[9 - 4*Sqrt[2]]*x - Sqrt[2]*Sqrt[1 + 4*x + 2*x^2 + x^4],x]

[Out]

(Sqrt[9 - 4*Sqrt[2]]*x^2)/2 - (Sqrt[2]*x*Sqrt[1 + 4*x + 2*x^2 + x^4])/3 - (2*Sqr
t[2]*((6*(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])^2*(-(EllipticF[ArcSin[Sqrt[
-(((1 + x)*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3
& , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1
^2 + #1^3 & , 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#
1 - #1^2 + #1^3 & , 2, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + Ro
ot[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Ro
ot[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]) +
EllipticPi[(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])/(-Root[1 + 3*#1 - #1^2 +
#1^3 & , 1, 0] + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]), ArcSin[Sqrt[-(((1 + x)*
(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))
/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 &
 , 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 +
#1^3 & , 2, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + Root[1 + 3*#1
 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1
 - #1^2 + #1^3 & , 3, 0]))]*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]))*Sqrt[(x
 - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])/((x - Root[1 + 3*#1 - #1^2 + #1^3 & ,
1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0]))]*(-1 - Root[1 + 3*#1 - #1^2
+ #1^3 & , 3, 0])*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])/((x - Root[1
+ 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*Sq
rt[-(((1 + x)*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1
^3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 -
 #1^2 + #1^3 & , 3, 0])))])/(Sqrt[1 + 4*x + 2*x^2 + x^4]*(Root[1 + 3*#1 - #1^2 +
 #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])) + (2*EllipticF[ArcSin[
Sqrt[((1 + x)*(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Root[1 + 3*#1 - #1^2 + #
1^3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1
- #1^2 + #1^3 & , 3, 0]))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 +
3*#1 - #1^2 + #1^3 & , 2, 0])*(-1 - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((-1
 - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]
 - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*(x - Root[1 + 3*#1 - #1^2 + #1^3 & ,
 1, 0])^2*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])/((x - Root[1 + 3*#1 -
 #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0]))]*(-1 - Root
[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 3,
0])/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^
3 & , 3, 0]))]*Sqrt[((1 + x)*(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Root[1 +
3*#1 - #1^2 + #1^3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 +
 Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))])/(Sqrt[1 + 4*x + 2*x^2 + x^4]*(-Root[1
 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])) + ((1
+ x)*(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(x - Root[1 + 3*#1 - #1^2 + #1^
3 & , 3, 0]) + (x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])^2*(1 + Root[1 + 3*#1
- #1^2 + #1^3 & , 1, 0])*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])/((x -
Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0
]))]*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])/((x - Root[1 + 3*#1 - #1^2
 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*Sqrt[-(((1 + x)
*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])
)/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3
& , 3, 0])))]*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])*((EllipticE[ArcSin[Sqr
t[-(((1 + x)*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^
3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 -
#1^2 + #1^3 & , 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3
*#1 - #1^2 + #1^3 & , 2, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 +
Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] -
Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2,
 0]))/(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]) - (EllipticPi[(1 + Root[1 + 3*
#1 - #1^2 + #1^3 & , 3, 0])/(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Root[1 + 3
*#1 - #1^2 + #1^3 & , 3, 0]), ArcSin[Sqrt[-(((1 + x)*(Root[1 + 3*#1 - #1^2 + #1^
3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2
 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])))]], ((Root[1 + 3
*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(1 + Root[1
 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(
Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]
*(1 - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 2,
 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/(-Root[1 + 3*#1 - #1^2 + #1^3 & ,
1, 0] + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]) + (EllipticF[ArcSin[Sqrt[-(((1 +
x)*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0
]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^
3 & , 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2
 + #1^3 & , 2, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + Root[1 + 3
*#1 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3
*#1 - #1^2 + #1^3 & , 3, 0]))]*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Root[1 +
 3*#1 - #1^2 + #1^3 & , 1, 0]*(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 +
 3*#1 - #1^2 + #1^3 & , 3, 0]) - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + R
oot[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] +
Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))))/Sqrt[1 + 4*x + 2*x^2 + x^4]))/3

3.1.2 Maple

Integral number [281] \[ \int \left (\sqrt{9-4 \sqrt{2}} x-\sqrt{2} \sqrt{1+4 x+2 x^2+x^4}\right ) \, dx \]

[A]   time = 0.504 (sec), size = 4640 ,normalized size = 96.67 \[ \text{output too large to display} \]

[In]  int(-2^(1/2)*(x^4+2*x^2+4*x+1)^(1/2)+x*(-1+2*2^(1/2)),x)

[Out]

1/2*x^2*(-1+2*2^(1/2))-2^(1/2)*(1/3*x*(x^4+2*x^2+4*x+1)^(1/2)+4/3*(-4/3-1/6*(26+
6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^
(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^
(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x
)/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(
26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/
3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)*(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1
/2))^(1/3)-1/3)^2*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x
-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26
+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(2
6+6*33^(1/2))^(1/3)+4/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(
1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)
*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x-1/6*(26+6*33^(1/
2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3
)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/
3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+
1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)/(1/2*(26+6*33^(1
/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3
/(26+6*33^(1/2))^(1/3)))/(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4
/3)/((1+x)*(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3)*(x-1/6*(2
6+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(
1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*3
3^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))
^(1/3))))^(1/2)*EllipticF(((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/
2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*(
26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^
(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*
33^(1/2))^(1/3)-1/3))^(1/2),((-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)
-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(-4/3-1/6
*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1
/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6
*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(
1/3)))/(-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(
26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3))))^(1/2))+4*(-4/3-1/6*(26+6*33^(1
/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8
/3/(26+6*33^(1/2))^(1/3)))*((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1
/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*
(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33
^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6
*33^(1/2))^(1/3)-1/3))^(1/2)*(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1
/3)-1/3)^2*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x-1/6*(2
6+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(
1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^
(1/2))^(1/3)+4/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(
1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)*((-1/3
*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x-1/6*(26+6*33^(1/2))^(1/
3)+4/3/(26+6*33^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(
26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-
1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26
+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)/(1/2*(26+6*33^(1/2))^(1
/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*
33^(1/2))^(1/3)))/(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)/((1
+x)*(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3)*(x-1/6*(26+6*33^
(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(
1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2)
)^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3))
))^(1/2)*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+1/3)*EllipticF((
(1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^
(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(2
6+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(
1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)
,((-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*
33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/
(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/
2))^(1/3)))/(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1
/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-1/2*(26+6*33^(1/2)
)^(1/3)+4/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(2
6+6*33^(1/2))^(1/3))))^(1/2))+(-4/3+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2)
)^(1/3))*EllipticPi(((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^
(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*3
3^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))
^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/
2))^(1/3)-1/3))^(1/2),(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1
/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/2*(26+6*
33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3
)-8/3/(26+6*33^(1/2))^(1/3))),((-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/
3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(-4/3-1
/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^
(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26
+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))
^(1/3)))/(-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3
*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3))))^(1/2)))+2/3*((1+x)*(x-1/6*(2
6+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(
1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*3
3^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))
^(1/3)))+(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)
*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*((1/2*(26+6*33^(1/2))^(
1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6
*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/
3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(
26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)*(x+1/3*(26+6*33^(1/2)
)^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3)^2*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*
33^(1/2))^(1/3)+4/3)*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-
1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6
*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2
))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(
1/2))^(1/3)-1/3))^(1/2)*((-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4
/3)*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1
/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-
4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+
6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))
^(1/2)*((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(
26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3))+(1/6*(26+6*33^(1/2))^(1/3)-4/3/(
26+6*33^(1/2))^(1/3)+1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^
(1/2))^(1/3)))*(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+1/3)+(-1/3*
(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+1/3)^2)/(1/2*(26+6*33^(1/2))^(1/
3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*3
3^(1/2))^(1/3)))/(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*Elli
pticF(((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(2
6+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*33^(1/2))^(1/3)
-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26
+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3)
)^(1/2),((-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3
*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(-4/3-1/6*(26+6*33^(1/2))^(1/
3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6
*33^(1/2))^(1/3)))/(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/2
*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-1/2*(26+6*3
3^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)
-8/3/(26+6*33^(1/2))^(1/3))))^(1/2))+(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*3
3^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/
3)))*EllipticE(((1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)
*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*33^(1/
2))^(1/3)-4/3/(26+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3
)-8/3/(26+6*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(
1/3)-1/3))^(1/2),((-1/2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1
/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(-4/3-1/6*(26+6*33^(
1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-
8/3/(26+6*33^(1/2))^(1/3)))/(-4/3-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^
(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-1/
2*(26+6*33^(1/2))^(1/3)+4/(26+6*33^(1/2))^(1/3)+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/
2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3))))^(1/2))/(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(2
6+6*33^(1/2))^(1/3)+4/3)))/((1+x)*(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2
))^(1/3)-1/3)*(x-1/6*(26+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3
^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*(x-1/6*(26+6*33^(
1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1
/3)-8/3/(26+6*33^(1/2))^(1/3))))^(1/2))

3.1.3 Maxima

Integral number [145] \[ \int x \cos (k \csc (x)) \cot (x) \csc (x) \, dx \]

[A]   time = 0.132088 (sec), size = 324 ,normalized size = 23.14 \[ -\frac{{\left (x e^{\left (\frac{4 \, k \cos \left (2 \, x\right ) \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} + \frac{4 \, k \sin \left (2 \, x\right ) \sin \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} + x e^{\left (\frac{4 \, k \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}\right )} e^{\left (-\frac{2 \, k \cos \left (2 \, x\right ) \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac{2 \, k \sin \left (2 \, x\right ) \sin \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac{2 \, k \cos \left (x\right )}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} \sin \left (\frac{2 \,{\left (k \cos \left (x\right ) \sin \left (2 \, x\right ) - k \cos \left (2 \, x\right ) \sin \left (x\right ) + k \sin \left (x\right )\right )}}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}{2 \, k} \]

[In]  integrate(x*cos(x)*cos(k/sin(x))/sin(x)^2,x, algorithm="maxima")

[Out]

-1/2*(x*e^(4*k*cos(2*x)*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) + 4*k*
sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)) + x*e^(4*k*cos(x)/(c
os(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)))*e^(-2*k*cos(2*x)*cos(x)/(cos(2*x)^2 +
 sin(2*x)^2 - 2*cos(2*x) + 1) - 2*k*sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2*x)^2 - 2
*cos(2*x) + 1) - 2*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1))*sin(2*(k
*cos(x)*sin(2*x) - k*cos(2*x)*sin(x) + k*sin(x))/(cos(2*x)^2 + sin(2*x)^2 - 2*co
s(2*x) + 1))/k