3.104 \(\int \frac{e+f x}{\left (1+\sqrt{3}+x\right ) \sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=173 \[ \frac{\left (e-\sqrt{3} f-f\right ) \tan ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (x+1)}{\sqrt{x^3+1}}\right )}{\sqrt{3 \left (3+2 \sqrt{3}\right )}}+\frac{\sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (e-\left (1-\sqrt{3}\right ) f\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

((e - f - Sqrt[3]*f)*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/Sqrt[3
*(3 + 2*Sqrt[3])] + (Sqrt[2 + Sqrt[3]]*(e - (1 - Sqrt[3])*f)*(1 + x)*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x
)], -7 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Rubi [A]  time = 0.496004, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16 \[ \frac{\left (e-\left (1+\sqrt{3}\right ) f\right ) \tan ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (x+1)}{\sqrt{x^3+1}}\right )}{\sqrt{3 \left (3+2 \sqrt{3}\right )}}+\frac{\sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (e-\left (1-\sqrt{3}\right ) f\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]  Int[(e + f*x)/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]

[Out]

((e - (1 + Sqrt[3])*f)*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/Sqrt
[3*(3 + 2*Sqrt[3])] + (Sqrt[2 + Sqrt[3]]*(e - (1 - Sqrt[3])*f)*(1 + x)*Sqrt[(1 -
 x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] +
 x)], -7 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 13.7666, size = 82, normalized size = 0.47 \[ \frac{2 \tilde{\infty } \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (e + f\right ) \left (x + 1\right ) F\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{\sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{x^{3} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x+e)/(1+x+3**(1/2))/(x**3+1)**(1/2),x)

[Out]

2*zoo*sqrt((x**2 - x + 1)/(x + 1 + sqrt(3))**2)*(e + f)*(x + 1)*elliptic_f(asin(
(x - sqrt(3) + 1)/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(sqrt((x + 1)/(x + 1 + sqr
t(3))**2)*sqrt(x**3 + 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.709146, size = 291, normalized size = 1.68 \[ \frac{2 \sqrt{\frac{2}{3}} \sqrt{\frac{i (x+1)}{\sqrt{3}+3 i}} \left (2 \sqrt{-2 i x+\sqrt{3}+i} \sqrt{x^2-x+1} \left (\left (3+\sqrt{3}\right ) f-\sqrt{3} e\right ) \Pi \left (\frac{2 \sqrt{3}}{3 i+(1+2 i) \sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )+3 f \sqrt{2 i x+\sqrt{3}-i} \left (\left ((1+2 i)+i \sqrt{3}\right ) x-\sqrt{3}-(2+i)\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )\right )}{\left (3 i+(1+2 i) \sqrt{3}\right ) \sqrt{-2 i x+\sqrt{3}+i} \sqrt{x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(e + f*x)/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[2/3]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*(3*f*Sqrt[-I + Sqrt[3] + (2*I)*x]
*((-2 - I) - Sqrt[3] + ((1 + 2*I) + I*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[I + Sqrt
[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])] + 2*(-(Sqrt[3]*e
) + (3 + Sqrt[3])*f)*Sqrt[I + Sqrt[3] - (2*I)*x]*Sqrt[1 - x + x^2]*EllipticPi[(2
*Sqrt[3])/(3*I + (1 + 2*I)*Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]/(Sqrt[2]
*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])]))/((3*I + (1 + 2*I)*Sqrt[3])*Sqrt[I + S
qrt[3] - (2*I)*x]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Maple [A]  time = 0.038, size = 260, normalized size = 1.5 \[ 2\,{\frac{f \left ( 3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) }+{\frac{ \left ( 2\,e-2\,f-2\,f\sqrt{3} \right ) \left ({\frac{3}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{3}\sqrt{{\frac{1+x}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}}\sqrt{{\frac{1}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}} \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) }}\sqrt{{\frac{1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}} \left ( x-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) }}{\it EllipticPi} \left ( \sqrt{{\frac{1+x}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},{\frac{ \left ( -{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{3}},\sqrt{{\frac{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{{x}^{3}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x+e)/(1+x+3^(1/2))/(x^3+1)^(1/2),x)

[Out]

2*f*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))
/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/
(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/
(-3/2-1/2*I*3^(1/2)))^(1/2))+2/3*(e-f-f*3^(1/2))*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2
-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/
2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*3^(1/2)*EllipticPi(((
1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^
(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x + e}{\sqrt{x^{3} + 1}{\left (x + \sqrt{3} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x + e}{\sqrt{x^{3} + 1}{\left (x + \sqrt{3} + 1\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)),x, algorithm="fricas")

[Out]

integral((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{e + f x}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 1 + \sqrt{3}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x+e)/(1+x+3**(1/2))/(x**3+1)**(1/2),x)

[Out]

Integral((e + f*x)/(sqrt((x + 1)*(x**2 - x + 1))*(x + 1 + sqrt(3))), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x + e}{\sqrt{x^{3} + 1}{\left (x + \sqrt{3} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)