3.121 \(\int \frac{1+\sqrt{3}+x}{(c+d x) \sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=319 \[ -\frac{(x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) \tan ^{-1}\left (\frac{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c^2+c d+d^2}}{\sqrt{d} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c-d}}\right )}{\sqrt{d} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \sqrt{c-d} \sqrt{c^2+c d+d^2}}-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \left (c-\left (1-\sqrt{3}\right ) d\right )} \]

[Out]

-(((c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[
(Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*S
qrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[d]*Sqrt[c^2 + c*d +
d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])) - (4*3^(1/4)*Sqrt[2 + Sqr
t[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[
3])*d)^2/(c - (1 - Sqrt[3])*d)^2, -ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)],
-7 - 4*Sqrt[3]])/((c - (1 - Sqrt[3])*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1
 + x^3])

_______________________________________________________________________________________

Rubi [A]  time = 2.52528, antiderivative size = 319, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24 \[ -\frac{(x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) \tan ^{-1}\left (\frac{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c^2+c d+d^2}}{\sqrt{d} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c-d}}\right )}{\sqrt{d} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \sqrt{c-d} \sqrt{c^2+c d+d^2}}-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \left (c-\left (1-\sqrt{3}\right ) d\right )} \]

Antiderivative was successfully verified.

[In]  Int[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

-(((c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[
(Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*S
qrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[d]*Sqrt[c^2 + c*d +
d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])) - (4*3^(1/4)*Sqrt[2 + Sqr
t[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[
3])*d)^2/(c - (1 - Sqrt[3])*d)^2, -ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)],
-7 - 4*Sqrt[3]])/((c - (1 - Sqrt[3])*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1
 + x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 155.724, size = 326, normalized size = 1.02 \[ - \frac{4 \sqrt [4]{3} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{- \sqrt{3} + 2} \left (x + 1\right ) \Pi \left (\frac{\left (- c + d + \sqrt{3} d\right )^{2}}{\left (c - d + \sqrt{3} d\right )^{2}}; \operatorname{asin}{\left (\frac{- x - 1 + \sqrt{3}}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{\sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{- 4 \sqrt{3} + 7} \sqrt{x^{3} + 1} \left (c - d + \sqrt{3} d\right )} - \frac{\sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (c - d \left (1 + \sqrt{3}\right )\right ) \left (x + 1\right ) \operatorname{atan}{\left (\frac{3^{\frac{3}{4}} \sqrt{- \sqrt{3} + 2} \sqrt{- \frac{\left (- x - 1 + \sqrt{3}\right )^{2}}{\left (x + 1 + \sqrt{3}\right )^{2}} + 1} \sqrt{c^{2} + c d + d^{2}}}{3 \sqrt{d} \sqrt{c - d} \sqrt{\frac{\left (- x - 1 + \sqrt{3}\right )^{2}}{\left (x + 1 + \sqrt{3}\right )^{2}} - 4 \sqrt{3} + 7}} \right )}}{\sqrt{d} \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{c - d} \sqrt{x^{3} + 1} \sqrt{c^{2} + c d + d^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((1+x+3**(1/2))/(d*x+c)/(x**3+1)**(1/2),x)

[Out]

-4*3**(1/4)*sqrt((x**2 - x + 1)/(x + 1 + sqrt(3))**2)*sqrt(-sqrt(3) + 2)*(x + 1)
*elliptic_pi((-c + d + sqrt(3)*d)**2/(c - d + sqrt(3)*d)**2, asin((-x - 1 + sqrt
(3))/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(sqrt((x + 1)/(x + 1 + sqrt(3))**2)*sqr
t(-4*sqrt(3) + 7)*sqrt(x**3 + 1)*(c - d + sqrt(3)*d)) - sqrt((x**2 - x + 1)/(x +
 1 + sqrt(3))**2)*(c - d*(1 + sqrt(3)))*(x + 1)*atan(3**(3/4)*sqrt(-sqrt(3) + 2)
*sqrt(-(-x - 1 + sqrt(3))**2/(x + 1 + sqrt(3))**2 + 1)*sqrt(c**2 + c*d + d**2)/(
3*sqrt(d)*sqrt(c - d)*sqrt((-x - 1 + sqrt(3))**2/(x + 1 + sqrt(3))**2 - 4*sqrt(3
) + 7)))/(sqrt(d)*sqrt((x + 1)/(x + 1 + sqrt(3))**2)*sqrt(c - d)*sqrt(x**3 + 1)*
sqrt(c**2 + c*d + d**2))

_______________________________________________________________________________________

Mathematica [C]  time = 1.01913, size = 214, normalized size = 0.67 \[ \frac{2 \sqrt{\frac{x+1}{1+\sqrt [3]{-1}}} \left (-\frac{\left (\sqrt [3]{-1}-x\right ) \sqrt{\frac{\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac{i \sqrt{x^2-x+1} \left (c-\left (1+\sqrt{3}\right ) d\right ) \Pi \left (\frac{i \sqrt{3} d}{c+\sqrt [3]{-1} d};\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{d \sqrt{x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(
2/3)*x)/(1 + (-1)^(1/3))]*EllipticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/
3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]) + (I*(c - (1 + Sq
rt[3])*d)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c + (-1)^(1/3)*d), ArcSin[
Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(c + (-1)^(1/3)*d)))/(d
*Sqrt[1 + x^3])

_______________________________________________________________________________________

Maple [A]  time = 0.056, size = 275, normalized size = 0.9 \[ 2\,{\frac{3/2-i/2\sqrt{3}}{d\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) }+2\,{\frac{ \left ( d\sqrt{3}-c+d \right ) \left ( 3/2-i/2\sqrt{3} \right ) }{{d}^{2}\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},{(-3/2+i/2\sqrt{3}) \left ( -1+{\frac{c}{d}} \right ) ^{-1}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) \left ( -1+{\frac{c}{d}} \right ) ^{-1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x)

[Out]

2/d*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))
/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/
(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/
(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(d*3^(1/2)-c+d)/d^2*(3/2-1/2*I*3^(1/2))*((1+x)/(3
/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-
1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)/(-1+c/d)*EllipticPi
(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(-1+c/d),((-3/2+1/2*I*3^
(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x + \sqrt{3} + 1}{\sqrt{x^{3} + 1}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)

_______________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)),x, algorithm="fricas")

[Out]

Timed out

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x + 1 + \sqrt{3}}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((1+x+3**(1/2))/(d*x+c)/(x**3+1)**(1/2),x)

[Out]

Integral((x + 1 + sqrt(3))/(sqrt((x + 1)*(x**2 - x + 1))*(c + d*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x + \sqrt{3} + 1}{\sqrt{x^{3} + 1}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)),x, algorithm="giac")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)