3.189 \(\int \frac{(d+e x)^3}{\sqrt{a+c x^4}} \, dx\)

Optimal. Leaf size=295 \[ \frac{d \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (3 \sqrt{a} e^2+\sqrt{c} d^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt{a+c x^4}}-\frac{3 \sqrt [4]{a} d e^2 \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{3 d^2 e \tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a+c x^4}}\right )}{2 \sqrt{c}}+\frac{3 d e^2 x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{e^3 \sqrt{a+c x^4}}{2 c} \]

[Out]

(e^3*Sqrt[a + c*x^4])/(2*c) + (3*d*e^2*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sq
rt[c]*x^2)) + (3*d^2*e*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a + c*x^4]])/(2*Sqrt[c]) - (3*
a^(1/4)*d*e^2*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2
]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (d*
(Sqrt[c]*d^2 + 3*Sqrt[a]*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a]
+ Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(1/4)*c^(3
/4)*Sqrt[a + c*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.38285, antiderivative size = 295, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.421 \[ \frac{d \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (3 \sqrt{a} e^2+\sqrt{c} d^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt{a+c x^4}}-\frac{3 \sqrt [4]{a} d e^2 \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{3 d^2 e \tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a+c x^4}}\right )}{2 \sqrt{c}}+\frac{3 d e^2 x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{e^3 \sqrt{a+c x^4}}{2 c} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x)^3/Sqrt[a + c*x^4],x]

[Out]

(e^3*Sqrt[a + c*x^4])/(2*c) + (3*d*e^2*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sq
rt[c]*x^2)) + (3*d^2*e*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a + c*x^4]])/(2*Sqrt[c]) - (3*
a^(1/4)*d*e^2*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2
]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (d*
(Sqrt[c]*d^2 + 3*Sqrt[a]*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a]
+ Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(1/4)*c^(3
/4)*Sqrt[a + c*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 42.9493, size = 272, normalized size = 0.92 \[ - \frac{3 \sqrt [4]{a} d e^{2} \sqrt{\frac{a + c x^{4}}{\left (\sqrt{a} + \sqrt{c} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{c} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{c^{\frac{3}{4}} \sqrt{a + c x^{4}}} + \frac{e^{3} \sqrt{a + c x^{4}}}{2 c} + \frac{3 d^{2} e \operatorname{atanh}{\left (\frac{\sqrt{c} x^{2}}{\sqrt{a + c x^{4}}} \right )}}{2 \sqrt{c}} + \frac{3 d e^{2} x \sqrt{a + c x^{4}}}{\sqrt{c} \left (\sqrt{a} + \sqrt{c} x^{2}\right )} + \frac{d \sqrt{\frac{a + c x^{4}}{\left (\sqrt{a} + \sqrt{c} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{c} x^{2}\right ) \left (3 \sqrt{a} e^{2} + \sqrt{c} d^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 \sqrt [4]{a} c^{\frac{3}{4}} \sqrt{a + c x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**3/(c*x**4+a)**(1/2),x)

[Out]

-3*a**(1/4)*d*e**2*sqrt((a + c*x**4)/(sqrt(a) + sqrt(c)*x**2)**2)*(sqrt(a) + sqr
t(c)*x**2)*elliptic_e(2*atan(c**(1/4)*x/a**(1/4)), 1/2)/(c**(3/4)*sqrt(a + c*x**
4)) + e**3*sqrt(a + c*x**4)/(2*c) + 3*d**2*e*atanh(sqrt(c)*x**2/sqrt(a + c*x**4)
)/(2*sqrt(c)) + 3*d*e**2*x*sqrt(a + c*x**4)/(sqrt(c)*(sqrt(a) + sqrt(c)*x**2)) +
 d*sqrt((a + c*x**4)/(sqrt(a) + sqrt(c)*x**2)**2)*(sqrt(a) + sqrt(c)*x**2)*(3*sq
rt(a)*e**2 + sqrt(c)*d**2)*elliptic_f(2*atan(c**(1/4)*x/a**(1/4)), 1/2)/(2*a**(1
/4)*c**(3/4)*sqrt(a + c*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.504441, size = 240, normalized size = 0.81 \[ \frac{-2 \sqrt{c} d \sqrt{\frac{c x^4}{a}+1} \left (3 \sqrt{a} e^2+i \sqrt{c} d^2\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{c}}{\sqrt{a}}} x\right )\right |-1\right )+e \sqrt{\frac{i \sqrt{c}}{\sqrt{a}}} \left (3 \sqrt{c} d^2 \sqrt{a+c x^4} \tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a+c x^4}}\right )+e^2 \left (a+c x^4\right )\right )+6 \sqrt{a} \sqrt{c} d e^2 \sqrt{\frac{c x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{c}}{\sqrt{a}}} x\right )\right |-1\right )}{2 c \sqrt{\frac{i \sqrt{c}}{\sqrt{a}}} \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(d + e*x)^3/Sqrt[a + c*x^4],x]

[Out]

(Sqrt[(I*Sqrt[c])/Sqrt[a]]*e*(e^2*(a + c*x^4) + 3*Sqrt[c]*d^2*Sqrt[a + c*x^4]*Ar
cTanh[(Sqrt[c]*x^2)/Sqrt[a + c*x^4]]) + 6*Sqrt[a]*Sqrt[c]*d*e^2*Sqrt[1 + (c*x^4)
/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1] - 2*Sqrt[c]*d*(I*Sqrt[
c]*d^2 + 3*Sqrt[a]*e^2)*Sqrt[1 + (c*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[c])
/Sqrt[a]]*x], -1])/(2*Sqrt[(I*Sqrt[c])/Sqrt[a]]*c*Sqrt[a + c*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.012, size = 218, normalized size = 0.7 \[{{d}^{3}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}}+{\frac{{e}^{3}}{2\,c}\sqrt{c{x}^{4}+a}}+{\frac{3\,{d}^{2}e}{2}\ln \left ({x}^{2}\sqrt{c}+\sqrt{c{x}^{4}+a} \right ){\frac{1}{\sqrt{c}}}}+{3\,i{e}^{2}d\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^3/(c*x^4+a)^(1/2),x)

[Out]

d^3/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/
2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)+1/2*e^3*(
c*x^4+a)^(1/2)/c+3/2*d^2*e*ln(x^2*c^(1/2)+(c*x^4+a)^(1/2))/c^(1/2)+3*I*e^2*d*a^(
1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1
/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)
-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + d\right )}^{3}}{\sqrt{c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*x^4 + a),x, algorithm="maxima")

[Out]

integrate((e*x + d)^3/sqrt(c*x^4 + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}}{\sqrt{c x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*x^4 + a),x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)/sqrt(c*x^4 + a), x)

_______________________________________________________________________________________

Sympy [A]  time = 8.35472, size = 141, normalized size = 0.48 \[ e^{3} \left (\begin{cases} \frac{x^{4}}{4 \sqrt{a}} & \text{for}\: c = 0 \\\frac{\sqrt{a + c x^{4}}}{2 c} & \text{otherwise} \end{cases}\right ) + \frac{3 d^{2} e \operatorname{asinh}{\left (\frac{\sqrt{c} x^{2}}{\sqrt{a}} \right )}}{2 \sqrt{c}} + \frac{d^{3} x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} + \frac{3 d e^{2} x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**3/(c*x**4+a)**(1/2),x)

[Out]

e**3*Piecewise((x**4/(4*sqrt(a)), Eq(c, 0)), (sqrt(a + c*x**4)/(2*c), True)) + 3
*d**2*e*asinh(sqrt(c)*x**2/sqrt(a))/(2*sqrt(c)) + d**3*x*gamma(1/4)*hyper((1/4,
1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + 3*d*e**2*x**3*g
amma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7
/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + d\right )}^{3}}{\sqrt{c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*x^4 + a),x, algorithm="giac")

[Out]

integrate((e*x + d)^3/sqrt(c*x^4 + a), x)