3.226 \(\int \frac{\sqrt{a x^2}}{\sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=260 \[ \frac{2 \sqrt{x^3+1} \sqrt{a x^2}}{x \left (x+\sqrt{3}+1\right )}+\frac{2 \sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{a x^2} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} x \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{a x^2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{x \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

(2*Sqrt[a*x^2]*Sqrt[1 + x^3])/(x*(1 + Sqrt[3] + x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]
*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(x*Sqrt[(1 + x)/(1 + Sqrt[3
] + x)^2]*Sqrt[1 + x^3]) + (2*Sqrt[2]*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 - x + x^2)/(1
+ Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*
Sqrt[3]])/(3^(1/4)*x*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Rubi [A]  time = 0.144361, antiderivative size = 260, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21 \[ \frac{2 \sqrt{x^3+1} \sqrt{a x^2}}{x \left (x+\sqrt{3}+1\right )}+\frac{2 \sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{a x^2} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} x \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{a x^2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{x \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a*x^2]/Sqrt[1 + x^3],x]

[Out]

(2*Sqrt[a*x^2]*Sqrt[1 + x^3])/(x*(1 + Sqrt[3] + x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]
*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(x*Sqrt[(1 + x)/(1 + Sqrt[3
] + x)^2]*Sqrt[1 + x^3]) + (2*Sqrt[2]*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 - x + x^2)/(1
+ Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*
Sqrt[3]])/(3^(1/4)*x*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 15.0113, size = 233, normalized size = 0.9 \[ \frac{2 \sqrt{a x^{2}} \sqrt{x^{3} + 1}}{x \left (x + 1 + \sqrt{3}\right )} - \frac{\sqrt [4]{3} \sqrt{a x^{2}} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{- \sqrt{3} + 2} \left (x + 1\right ) E\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{x \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{x^{3} + 1}} + \frac{2 \sqrt{2} \cdot 3^{\frac{3}{4}} \sqrt{a x^{2}} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x + 1\right ) F\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{3 x \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{x^{3} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((a*x**2)**(1/2)/(x**3+1)**(1/2),x)

[Out]

2*sqrt(a*x**2)*sqrt(x**3 + 1)/(x*(x + 1 + sqrt(3))) - 3**(1/4)*sqrt(a*x**2)*sqrt
((x**2 - x + 1)/(x + 1 + sqrt(3))**2)*sqrt(-sqrt(3) + 2)*(x + 1)*elliptic_e(asin
((x - sqrt(3) + 1)/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(x*sqrt((x + 1)/(x + 1 +
sqrt(3))**2)*sqrt(x**3 + 1)) + 2*sqrt(2)*3**(3/4)*sqrt(a*x**2)*sqrt((x**2 - x +
1)/(x + 1 + sqrt(3))**2)*(x + 1)*elliptic_f(asin((x - sqrt(3) + 1)/(x + 1 + sqrt
(3))), -7 - 4*sqrt(3))/(3*x*sqrt((x + 1)/(x + 1 + sqrt(3))**2)*sqrt(x**3 + 1))

_______________________________________________________________________________________

Mathematica [A]  time = 0.131403, size = 134, normalized size = 0.52 \[ -\frac{2 a x \sqrt{-\sqrt [6]{-1} \left (x+(-1)^{2/3}\right )} \sqrt{(-1)^{2/3} x^2+\sqrt [3]{-1} x+1} \left ((-1)^{5/6} F\left (\sin ^{-1}\left (\frac{\sqrt{-(-1)^{5/6} (x+1)}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )+\sqrt{3} E\left (\sin ^{-1}\left (\frac{\sqrt{-(-1)^{5/6} (x+1)}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )\right )}{\sqrt [4]{3} \sqrt{x^3+1} \sqrt{a x^2}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[Sqrt[a*x^2]/Sqrt[1 + x^3],x]

[Out]

(-2*a*x*Sqrt[-((-1)^(1/6)*((-1)^(2/3) + x))]*Sqrt[1 + (-1)^(1/3)*x + (-1)^(2/3)*
x^2]*(Sqrt[3]*EllipticE[ArcSin[Sqrt[-((-1)^(5/6)*(1 + x))]/3^(1/4)], (-1)^(1/3)]
 + (-1)^(5/6)*EllipticF[ArcSin[Sqrt[-((-1)^(5/6)*(1 + x))]/3^(1/4)], (-1)^(1/3)]
))/(3^(1/4)*Sqrt[a*x^2]*Sqrt[1 + x^3])

_______________________________________________________________________________________

Maple [A]  time = 0.029, size = 270, normalized size = 1. \[{\frac{-3+i\sqrt{3}}{2\,x}\sqrt{a{x}^{2}}\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}} \left ( i{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}-i{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}+3\,{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) -{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \right ){\frac{1}{\sqrt{{x}^{3}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((a*x^2)^(1/2)/(x^3+1)^(1/2),x)

[Out]

1/2*(a*x^2)^(1/2)*(-3+I*3^(1/2))*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x
+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*(I*EllipticE((
-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)-I*
EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))
*3^(1/2)+3*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)
+3))^(1/2))-EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2
)+3))^(1/2)))/x/(x^3+1)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{a x^{2}}}{\sqrt{x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(a*x^2)/sqrt(x^3 + 1),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^2)/sqrt(x^3 + 1), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{a x^{2}}}{\sqrt{x^{3} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(a*x^2)/sqrt(x^3 + 1),x, algorithm="fricas")

[Out]

integral(sqrt(a*x^2)/sqrt(x^3 + 1), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{a x^{2}}}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((a*x**2)**(1/2)/(x**3+1)**(1/2),x)

[Out]

Integral(sqrt(a*x**2)/sqrt((x + 1)*(x**2 - x + 1)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{a x^{2}}}{\sqrt{x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(a*x^2)/sqrt(x^3 + 1),x, algorithm="giac")

[Out]

integrate(sqrt(a*x^2)/sqrt(x^3 + 1), x)