3.356 \(\int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{\left (a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}\right )^{3/2}} \, dx\)

Optimal. Leaf size=122 \[ \frac{4 f^3 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+2} \, _2F_1\left (2,\frac{n+2}{2};\frac{n+4}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+2) \left (d^2-a f^2\right )^2} \]

[Out]

(4*f^3*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(2 + n)*Hypergeomet
ric2F1[2, (2 + n)/2, (4 + n)/2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/
f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^2*(2 + n))

_______________________________________________________________________________________

Rubi [A]  time = 0.497419, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 58, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.052 \[ \frac{4 f^3 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+2} \, _2F_1\left (2,\frac{n+2}{2};\frac{n+4}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+2) \left (d^2-a f^2\right )^2} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^(3/2),x]

[Out]

(4*f^3*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(2 + n)*Hypergeomet
ric2F1[2, (2 + n)/2, (4 + n)/2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/
f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^2*(2 + n))

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ 4 e f^{3} \int ^{d + e x + f \sqrt{a + \frac{2 d e x}{f^{2}} + \frac{e^{2} x^{2}}{f^{2}}}} \frac{x x^{n}}{e^{2} \left (a f^{2} - d^{2} + x^{2}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**(3/2),x)

[Out]

4*e*f**3*Integral(x*x**n/(e**2*(a*f**2 - d**2 + x**2)**2), (x, d + e*x + f*sqrt(
a + 2*d*e*x/f**2 + e**2*x**2/f**2)))

_______________________________________________________________________________________

Mathematica [A]  time = 0.297942, size = 0, normalized size = 0. \[ \int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{\left (a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}\right )^{3/2}} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^(3/2),x]

[Out]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)
/f^2 + (e^2*x^2)/f^2)^(3/2), x]

_______________________________________________________________________________________

Maple [F]  time = 0.111, size = 0, normalized size = 0. \[ \int{1 \left ( d+ex+f\sqrt{a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}}} \right ) ^{n} \left ( a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}} \right ) ^{-{\frac{3}{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(3/2),x)

[Out]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(3
/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a +
 2*d*e*x/f^2)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (e x + f \sqrt{\frac{e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f^{2}}{{\left (e^{2} x^{2} + a f^{2} + 2 \, d e x\right )} \sqrt{\frac{e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^(3/2),x, algorithm="fricas")

[Out]

integral((e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f^2/((e^2*x^2 + a
*f^2 + 2*d*e*x)*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2)), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**(3/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a +
 2*d*e*x/f^2)^(3/2), x)