3.382 \(\int \frac{x^m \left (e (1+m)+2 f (1+m-n) x^n\right )}{e^2-4 d f x^{2+2 m}+4 e f x^n+4 f^2 x^{2 n}} \, dx\)

Optimal. Leaf size=42 \[ \frac{\tanh ^{-1}\left (\frac{2 \sqrt{d} \sqrt{f} x^{m+1}}{e+2 f x^n}\right )}{2 \sqrt{d} \sqrt{f}} \]

[Out]

ArcTanh[(2*Sqrt[d]*Sqrt[f]*x^(1 + m))/(e + 2*f*x^n)]/(2*Sqrt[d]*Sqrt[f])

_______________________________________________________________________________________

Rubi [A]  time = 0.373787, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 56, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.036 \[ \frac{\tanh ^{-1}\left (\frac{2 \sqrt{d} \sqrt{f} x^{m+1}}{e+2 f x^n}\right )}{2 \sqrt{d} \sqrt{f}} \]

Antiderivative was successfully verified.

[In]  Int[(x^m*(e*(1 + m) + 2*f*(1 + m - n)*x^n))/(e^2 - 4*d*f*x^(2 + 2*m) + 4*e*f*x^n + 4*f^2*x^(2*n)),x]

[Out]

ArcTanh[(2*Sqrt[d]*Sqrt[f]*x^(1 + m))/(e + 2*f*x^n)]/(2*Sqrt[d]*Sqrt[f])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 84.3159, size = 63, normalized size = 1.5 \[ \frac{\operatorname{atanh}{\left (\frac{2 \sqrt{d} \sqrt{f} x^{m + 1} \left (m + 1\right ) \left (m - n + 1\right )}{e \left (m + 1\right ) \left (m - n + 1\right ) + 2 f x^{n} \left (m + 1\right ) \left (m - n + 1\right )} \right )}}{2 \sqrt{d} \sqrt{f}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**m*(e*(1+m)+2*f*(1+m-n)*x**n)/(e**2-4*d*f*x**(2+2*m)+4*e*f*x**n+4*f**2*x**(2*n)),x)

[Out]

atanh(2*sqrt(d)*sqrt(f)*x**(m + 1)*(m + 1)*(m - n + 1)/(e*(m + 1)*(m - n + 1) +
2*f*x**n*(m + 1)*(m - n + 1)))/(2*sqrt(d)*sqrt(f))

_______________________________________________________________________________________

Mathematica [A]  time = 0.280598, size = 0, normalized size = 0. \[ \int \frac{x^m \left (e (1+m)+2 f (1+m-n) x^n\right )}{e^2-4 d f x^{2+2 m}+4 e f x^n+4 f^2 x^{2 n}} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[(x^m*(e*(1 + m) + 2*f*(1 + m - n)*x^n))/(e^2 - 4*d*f*x^(2 + 2*m) + 4*e*f*x^n + 4*f^2*x^(2*n)),x]

[Out]

Integrate[(x^m*(e*(1 + m) + 2*f*(1 + m - n)*x^n))/(e^2 - 4*d*f*x^(2 + 2*m) + 4*e
*f*x^n + 4*f^2*x^(2*n)), x]

_______________________________________________________________________________________

Maple [B]  time = 0.108, size = 78, normalized size = 1.9 \[{\frac{1}{4}\ln \left ({x}^{n}+{\frac{1}{2\,f} \left ( 2\,dfx{x}^{m}+e\sqrt{df} \right ){\frac{1}{\sqrt{df}}}} \right ){\frac{1}{\sqrt{df}}}}-{\frac{1}{4}\ln \left ({x}^{n}+{\frac{1}{2\,f} \left ( -2\,dfx{x}^{m}+e\sqrt{df} \right ){\frac{1}{\sqrt{df}}}} \right ){\frac{1}{\sqrt{df}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^m*(e*(1+m)+2*f*(1+m-n)*x^n)/(e^2-4*d*f*x^(2+2*m)+4*e*f*x^n+4*f^2*x^(2*n)),x)

[Out]

1/4/(d*f)^(1/2)*ln(x^n+1/2*(2*d*f*x*x^m+e*(d*f)^(1/2))/(d*f)^(1/2)/f)-1/4/(d*f)^
(1/2)*ln(x^n+1/2*(-2*d*f*x*x^m+e*(d*f)^(1/2))/(d*f)^(1/2)/f)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ -\int \frac{{\left (2 \, f{\left (m - n + 1\right )} x^{n} + e{\left (m + 1\right )}\right )} x^{m}}{4 \, d f x^{2 \, m + 2} - 4 \, f^{2} x^{2 \, n} - 4 \, e f x^{n} - e^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(2*f*(m - n + 1)*x^n + e*(m + 1))*x^m/(4*d*f*x^(2*m + 2) - 4*f^2*x^(2*n) - 4*e*f*x^n - e^2),x, algorithm="maxima")

[Out]

-integrate((2*f*(m - n + 1)*x^n + e*(m + 1))*x^m/(4*d*f*x^(2*m + 2) - 4*f^2*x^(2
*n) - 4*e*f*x^n - e^2), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.335337, size = 1, normalized size = 0.02 \[ \left [\frac{\log \left (-\frac{4 \, \sqrt{d f} d f x^{2} x^{2 \, m} + 4 \, d e f x x^{m} + 4 \, \sqrt{d f} f^{2} x^{2 \, n} + \sqrt{d f} e^{2} + 4 \,{\left (2 \, d f^{2} x x^{m} + \sqrt{d f} e f\right )} x^{n}}{4 \, d f x^{2} x^{2 \, m} - 4 \, f^{2} x^{2 \, n} - 4 \, e f x^{n} - e^{2}}\right )}{4 \, \sqrt{d f}}, \frac{\arctan \left (\frac{2 \, \sqrt{-d f} f x^{n} + \sqrt{-d f} e}{2 \, d f x x^{m}}\right )}{2 \, \sqrt{-d f}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(2*f*(m - n + 1)*x^n + e*(m + 1))*x^m/(4*d*f*x^(2*m + 2) - 4*f^2*x^(2*n) - 4*e*f*x^n - e^2),x, algorithm="fricas")

[Out]

[1/4*log(-(4*sqrt(d*f)*d*f*x^2*x^(2*m) + 4*d*e*f*x*x^m + 4*sqrt(d*f)*f^2*x^(2*n)
 + sqrt(d*f)*e^2 + 4*(2*d*f^2*x*x^m + sqrt(d*f)*e*f)*x^n)/(4*d*f*x^2*x^(2*m) - 4
*f^2*x^(2*n) - 4*e*f*x^n - e^2))/sqrt(d*f), 1/2*arctan(1/2*(2*sqrt(-d*f)*f*x^n +
 sqrt(-d*f)*e)/(d*f*x*x^m))/sqrt(-d*f)]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**m*(e*(1+m)+2*f*(1+m-n)*x**n)/(e**2-4*d*f*x**(2+2*m)+4*e*f*x**n+4*f**2*x**(2*n)),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int -\frac{{\left (2 \, f{\left (m - n + 1\right )} x^{n} + e{\left (m + 1\right )}\right )} x^{m}}{4 \, d f x^{2 \, m + 2} - 4 \, f^{2} x^{2 \, n} - 4 \, e f x^{n} - e^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(2*f*(m - n + 1)*x^n + e*(m + 1))*x^m/(4*d*f*x^(2*m + 2) - 4*f^2*x^(2*n) - 4*e*f*x^n - e^2),x, algorithm="giac")

[Out]

integrate(-(2*f*(m - n + 1)*x^n + e*(m + 1))*x^m/(4*d*f*x^(2*m + 2) - 4*f^2*x^(2
*n) - 4*e*f*x^n - e^2), x)