3.631 \(\int x \sqrt{a+8 x-8 x^2+4 x^3-x^4} \, dx\)

Optimal. Leaf size=466 \[ \frac{1}{4} \left ((x-1)^2+1\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}+\frac{1}{3} (x-1) \sqrt{a-(x-1)^4-2 (x-1)^2+3}-\frac{2 \left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{3 \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{1}{4} (a+4) \tan ^{-1}\left (\frac{(x-1)^2+1}{\sqrt{a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac{2 (a+3) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{2 \left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

((1 + (-1 + x)^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])/4 - (2*(1 - Sqrt[4 +
a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*(-1 + x))/(3*Sqrt[3 + a - 2*(-1 + x)^2 -
(-1 + x)^4]) + (Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1 + x))/3 + ((4 + a)*A
rcTan[(1 + (-1 + x)^2)/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]])/4 + (2*(1 - Sqr
t[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[Arc
Tan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqr
t[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3
+ a - 2*(-1 + x)^2 - (-1 + x)^4]) + (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 +
x)^2/(1 - Sqrt[4 + a]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sq
rt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (
-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

_______________________________________________________________________________________

Rubi [A]  time = 1.20298, antiderivative size = 466, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 12, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.462 \[ \frac{1}{4} \left ((x-1)^2+1\right ) \sqrt{a-(1-x)^4-2 (1-x)^2+3}-\frac{1}{3} (1-x) \sqrt{a-(1-x)^4-2 (1-x)^2+3}+\frac{2 \left (1-\sqrt{a+4}\right ) (1-x) \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right )}{3 \sqrt{a-(1-x)^4-2 (1-x)^2+3}}+\frac{1}{4} (a+4) \tan ^{-1}\left (\frac{(x-1)^2+1}{\sqrt{a-(1-x)^4-2 (1-x)^2+3}}\right )-\frac{2 (a+3) \sqrt{\sqrt{a+4}+1} \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(1-x)^2}{1-\sqrt{a+4}}+1}{\frac{(1-x)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(1-x)^4-2 (1-x)^2+3}}-\frac{2 \left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{3 \sqrt{\frac{\frac{(1-x)^2}{1-\sqrt{a+4}}+1}{\frac{(1-x)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(1-x)^4-2 (1-x)^2+3}} \]

Antiderivative was successfully verified.

[In]  Int[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4]*(1 + (-1 + x)^2))/4 + (2*(1 - Sqrt[4 + a]
)*(1 + (1 - x)^2/(1 - Sqrt[4 + a]))*(1 - x))/(3*Sqrt[3 + a - 2*(1 - x)^2 - (1 -
x)^4]) - (Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4]*(1 - x))/3 + ((4 + a)*ArcTan[(1
+ (-1 + x)^2)/Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4]])/4 - (2*(1 - Sqrt[4 + a])*S
qrt[1 + Sqrt[4 + a]]*(1 + (1 - x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(1 - x)/
Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (1 - x
)^2/(1 - Sqrt[4 + a]))/(1 + (1 - x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(1 - x)
^2 - (1 - x)^4]) - (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (1 - x)^2/(1 - Sqrt[4 +
 a]))*EllipticF[ArcTan[(1 - x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqr
t[4 + a])])/(3*Sqrt[(1 + (1 - x)^2/(1 - Sqrt[4 + a]))/(1 + (1 - x)^2/(1 + Sqrt[4
 + a]))]*Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 69.8447, size = 388, normalized size = 0.83 \[ \left (\frac{a}{4} + 1\right ) \operatorname{atan}{\left (- \frac{- 2 \left (x - 1\right )^{2} - 2}{2 \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} \right )} - \frac{\left (x - 1\right ) \left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \left (- \frac{2 \sqrt{a + 4}}{3} + \frac{2}{3}\right )}{\sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} + \frac{\left (x - 1\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}}{3} + \frac{\left (2 \left (x - 1\right )^{2} + 2\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}}{8} + \frac{2 \left (a + 3\right ) \left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \sqrt{\sqrt{a + 4} + 1} F\left (\operatorname{atan}{\left (\frac{x - 1}{\sqrt{\sqrt{a + 4} + 1}} \right )}\middle | \frac{2 \sqrt{a + 4}}{\sqrt{a + 4} - 1}\right )}{3 \sqrt{\frac{- \frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} - 1} + 1}{\frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} + 1} + 1}} \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} + \frac{2 \left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \left (- \sqrt{a + 4} + 1\right ) \sqrt{\sqrt{a + 4} + 1} E\left (\operatorname{atan}{\left (\frac{x - 1}{\sqrt{\sqrt{a + 4} + 1}} \right )}\middle | \frac{2 \sqrt{a + 4}}{\sqrt{a + 4} - 1}\right )}{3 \sqrt{\frac{- \frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} - 1} + 1}{\frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} + 1} + 1}} \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x*(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

(a/4 + 1)*atan(-(-2*(x - 1)**2 - 2)/(2*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3)))
 - (x - 1)*((x - 1)**2/(-sqrt(a + 4) + 1) + 1)*(-2*sqrt(a + 4)/3 + 2/3)/sqrt(a -
 (x - 1)**4 - 2*(x - 1)**2 + 3) + (x - 1)*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3
)/3 + (2*(x - 1)**2 + 2)*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3)/8 + 2*(a + 3)*(
(x - 1)**2/(-sqrt(a + 4) + 1) + 1)*sqrt(sqrt(a + 4) + 1)*elliptic_f(atan((x - 1)
/sqrt(sqrt(a + 4) + 1)), 2*sqrt(a + 4)/(sqrt(a + 4) - 1))/(3*sqrt((-(x - 1)**2/(
sqrt(a + 4) - 1) + 1)/((x - 1)**2/(sqrt(a + 4) + 1) + 1))*sqrt(a - (x - 1)**4 -
2*(x - 1)**2 + 3)) + 2*((x - 1)**2/(-sqrt(a + 4) + 1) + 1)*(-sqrt(a + 4) + 1)*sq
rt(sqrt(a + 4) + 1)*elliptic_e(atan((x - 1)/sqrt(sqrt(a + 4) + 1)), 2*sqrt(a + 4
)/(sqrt(a + 4) - 1))/(3*sqrt((-(x - 1)**2/(sqrt(a + 4) - 1) + 1)/((x - 1)**2/(sq
rt(a + 4) + 1) + 1))*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3))

_______________________________________________________________________________________

Mathematica [B]  time = 6.1211, size = 4389, normalized size = 9.42 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]  Integrate[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(1/6 - x/6 + x^2/4)*Sqrt[a - x*(-8 + 8*x - 4*x^2 + x^3)] + (Sqrt[a - x*(-8 + 8*x
 - 4*x^2 + x^3)]*((-8*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - S
qrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
 a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sq
rt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1
 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]
])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-
1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 -
Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 +
a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 -
 Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt
[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4
 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 +
 a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqr
t[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^
2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[
4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 -
 Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] +
 x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 +
 a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sq
rt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)
)]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1
 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]
])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + S
qrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt
[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
 a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a
]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (40*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-
1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 +
a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqr
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqr
t[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sq
rt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1
 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a
]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1
 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]
])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt
[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] + 2*Sqrt[-1 - S
qrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[
-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]
] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[
4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1
- Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + S
qrt[4 + a]])^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sq
rt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (6*a*(-Sqrt[-1 - Sqrt[4 + a]]
 - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 -
Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt
[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*
Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt
[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqr
t[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]]
- Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 - Sqrt[-1 - S
qrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
 a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sq
rt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] + 2*Sq
rt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
)/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sq
rt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]],
(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sq
rt[-1 + Sqrt[4 + a]])^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqr
t[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) - (4*((-1 + Sqrt[-1 -
Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4 + a]]
 + x) + 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt
[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sq
rt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1
 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sq
rt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-
1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]
] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[
4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*EllipticE[Arc
Sin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt
[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 -
 Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt
[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]) + ((
-((-1 - Sqrt[-1 - Sqrt[4 + a]])*(-2 - Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4
+ a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt
[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a
]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt
[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1
 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt
[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])) + (4*Elli
pticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]
] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sq
rt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-
1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] +
 Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])
/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))))/Sqrt[a + 8*x - 8*x^2 + 4*
x^3 - x^4]))/(6*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])

_______________________________________________________________________________________

Maple [B]  time = 0.027, size = 2551, normalized size = 5.5 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x)

[Out]

1/4*x^2*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-1/6*x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)+1/6*
(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-(1/6*a-2/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/
2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2
))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))
^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-
1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(
4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2)
)/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))
^(1/2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(
-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))
^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+
(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-
1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1
/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-
1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(
1/2))^(1/2)))^(1/2))-(1/2*a+10/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2)
)*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))
/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^
(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(
1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2
))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(
4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1
+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(
x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*((1-(-1+(4+a)^(1/2))^(1/2))*EllipticF(((-(-1-
(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4
+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-
(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)
^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2)
)^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))+2*(-1+(4+a)^(1/2))^(1/2)*EllipticPi(((-(
-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1
-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),
(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4
+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(
1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1
/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2)))-2/3*((x-1-(-1+(4+a
)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2))+((-1-(
4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1
/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2
))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2
*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1
+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1
/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)
)/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(4+a)^(1/2))^(1/2))*(1+(-1+(
4+a)^(1/2))^(1/2))-(1-(-1-(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)^(1/2))^(1/2))+(1-(-1-
(4+a)^(1/2))^(1/2))*(1-(-1+(4+a)^(1/2))^(1/2))+(1-(-1+(4+a)^(1/2))^(1/2))^2)/(-(
-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)*EllipticF((
(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-
(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/
2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1
+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)
^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-1/2*(-(-1-(4+a)^(1/2))^(1/2)+(-1+(
4+a)^(1/2))^(1/2))*EllipticE(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(
x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-
1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2
))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+
(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))/(-1+
(4+a)^(1/2))^(1/2)-4/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*EllipticPi
(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/
(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(
1/2),((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1
+(4+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a
)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))
^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))))/(-(x-1-(-1+(4+
a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+
(-1-(4+a)^(1/2))^(1/2)))^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x,x, algorithm="maxima")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x,x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int x \sqrt{a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x*(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

Integral(x*sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x,x, algorithm="giac")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)