3.633 \(\int \frac{x}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=474 \[ \frac{(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{(x-1)^2+1}{2 (a+4) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}-\frac{\left (1-\sqrt{a+4}\right ) (x-1) \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right )}{2 (a+3) (a+4) \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{\sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+4) \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}}+\frac{\left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(x-1)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{x-1}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+3) (a+4) \sqrt{\frac{\frac{(x-1)^2}{1-\sqrt{a+4}}+1}{\frac{(x-1)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

(1 + (-1 + x)^2)/(2*(4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((5 + a +
 (-1 + x)^2)*(-1 + x))/(2*(12 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^
4]) - ((1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*(-1 + x))/(2*(3 + a)
*(4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + ((1 - Sqrt[4 + a])*Sqrt[1 +
Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1
 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(2*(3 + a)*(4 + a)*Sqrt[(
1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a
 - 2*(-1 + x)^2 - (-1 + x)^4]) + (Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqr
t[4 + a]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1
 - Sqrt[4 + a])])/(2*(4 + a)*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 +
x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

_______________________________________________________________________________________

Rubi [A]  time = 1.19521, antiderivative size = 474, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385 \[ -\frac{(1-x) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt{a-(1-x)^4-2 (1-x)^2+3}}+\frac{(x-1)^2+1}{2 (a+4) \sqrt{a-(1-x)^4-2 (1-x)^2+3}}+\frac{\left (1-\sqrt{a+4}\right ) (1-x) \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right )}{2 (a+3) (a+4) \sqrt{a-(1-x)^4-2 (1-x)^2+3}}-\frac{\sqrt{\sqrt{a+4}+1} \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+4) \sqrt{\frac{\frac{(1-x)^2}{1-\sqrt{a+4}}+1}{\frac{(1-x)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(1-x)^4-2 (1-x)^2+3}}-\frac{\left (1-\sqrt{a+4}\right ) \sqrt{\sqrt{a+4}+1} \left (\frac{(1-x)^2}{1-\sqrt{a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac{1-x}{\sqrt{\sqrt{a+4}+1}}\right )|-\frac{2 \sqrt{a+4}}{1-\sqrt{a+4}}\right )}{2 (a+3) (a+4) \sqrt{\frac{\frac{(1-x)^2}{1-\sqrt{a+4}}+1}{\frac{(1-x)^2}{\sqrt{a+4}+1}+1}} \sqrt{a-(1-x)^4-2 (1-x)^2+3}} \]

Antiderivative was successfully verified.

[In]  Int[x/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]

[Out]

(1 + (-1 + x)^2)/(2*(4 + a)*Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4]) + ((1 - Sqrt[
4 + a])*(1 + (1 - x)^2/(1 - Sqrt[4 + a]))*(1 - x))/(2*(3 + a)*(4 + a)*Sqrt[3 + a
 - 2*(1 - x)^2 - (1 - x)^4]) - ((5 + a + (-1 + x)^2)*(1 - x))/(2*(12 + 7*a + a^2
)*Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4]) - ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 +
a]]*(1 + (1 - x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(1 - x)/Sqrt[1 + Sqrt[4 +
 a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(2*(3 + a)*(4 + a)*Sqrt[(1 + (1 - x)
^2/(1 - Sqrt[4 + a]))/(1 + (1 - x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(1 - x)^
2 - (1 - x)^4]) - (Sqrt[1 + Sqrt[4 + a]]*(1 + (1 - x)^2/(1 - Sqrt[4 + a]))*Ellip
ticF[ArcTan[(1 - x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])
/(2*(4 + a)*Sqrt[(1 + (1 - x)^2/(1 - Sqrt[4 + a]))/(1 + (1 - x)^2/(1 + Sqrt[4 +
a]))]*Sqrt[3 + a - 2*(1 - x)^2 - (1 - x)^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 77.0758, size = 388, normalized size = 0.82 \[ - \frac{\left (x - 1\right ) \left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \left (- \sqrt{a + 4} + 1\right )}{2 \left (a + 3\right ) \left (a + 4\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} + \frac{\left (x - 1\right ) \left (2 a + \left (2 a + 10\right ) \left (x - 1\right ) + 2 \left (x - 1\right )^{3} + 2 \left (x - 1\right )^{2} + 10\right )}{4 \left (a + 3\right ) \left (a + 4\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} + \frac{\sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}}{2 \left (a + 3\right ) \left (a + 4\right )} + \frac{\left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \sqrt{\sqrt{a + 4} + 1} F\left (\operatorname{atan}{\left (\frac{x - 1}{\sqrt{\sqrt{a + 4} + 1}} \right )}\middle | \frac{2 \sqrt{a + 4}}{\sqrt{a + 4} - 1}\right )}{2 \sqrt{\frac{- \frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} - 1} + 1}{\frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} + 1} + 1}} \left (a + 4\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} + \frac{\left (\frac{\left (x - 1\right )^{2}}{- \sqrt{a + 4} + 1} + 1\right ) \left (- \sqrt{a + 4} + 1\right ) \sqrt{\sqrt{a + 4} + 1} E\left (\operatorname{atan}{\left (\frac{x - 1}{\sqrt{\sqrt{a + 4} + 1}} \right )}\middle | \frac{2 \sqrt{a + 4}}{\sqrt{a + 4} - 1}\right )}{2 \sqrt{\frac{- \frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} - 1} + 1}{\frac{\left (x - 1\right )^{2}}{\sqrt{a + 4} + 1} + 1}} \left (a + 3\right ) \left (a + 4\right ) \sqrt{a - \left (x - 1\right )^{4} - 2 \left (x - 1\right )^{2} + 3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)

[Out]

-(x - 1)*((x - 1)**2/(-sqrt(a + 4) + 1) + 1)*(-sqrt(a + 4) + 1)/(2*(a + 3)*(a +
4)*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3)) + (x - 1)*(2*a + (2*a + 10)*(x - 1)
+ 2*(x - 1)**3 + 2*(x - 1)**2 + 10)/(4*(a + 3)*(a + 4)*sqrt(a - (x - 1)**4 - 2*(
x - 1)**2 + 3)) + sqrt(a - (x - 1)**4 - 2*(x - 1)**2 + 3)/(2*(a + 3)*(a + 4)) +
((x - 1)**2/(-sqrt(a + 4) + 1) + 1)*sqrt(sqrt(a + 4) + 1)*elliptic_f(atan((x - 1
)/sqrt(sqrt(a + 4) + 1)), 2*sqrt(a + 4)/(sqrt(a + 4) - 1))/(2*sqrt((-(x - 1)**2/
(sqrt(a + 4) - 1) + 1)/((x - 1)**2/(sqrt(a + 4) + 1) + 1))*(a + 4)*sqrt(a - (x -
 1)**4 - 2*(x - 1)**2 + 3)) + ((x - 1)**2/(-sqrt(a + 4) + 1) + 1)*(-sqrt(a + 4)
+ 1)*sqrt(sqrt(a + 4) + 1)*elliptic_e(atan((x - 1)/sqrt(sqrt(a + 4) + 1)), 2*sqr
t(a + 4)/(sqrt(a + 4) - 1))/(2*sqrt((-(x - 1)**2/(sqrt(a + 4) - 1) + 1)/((x - 1)
**2/(sqrt(a + 4) + 1) + 1))*(a + 3)*(a + 4)*sqrt(a - (x - 1)**4 - 2*(x - 1)**2 +
 3))

_______________________________________________________________________________________

Mathematica [B]  time = 6.0954, size = 3593, normalized size = 7.58 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]  Integrate[x/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]

[Out]

((-a - 2*x + a*x - a*x^2 - x^3)*(a + 8*x - 8*x^2 + 4*x^3 - x^4)^2)/(2*(3 + a)*(4
 + a)*(-a - 8*x + 8*x^2 - 4*x^3 + x^4)*(a - x*(-8 + 8*x - 4*x^2 + x^3))^(3/2)) +
 ((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2)*((4*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 +
 Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]
] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[
4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt
[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
 Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqr
t[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1
+ Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqr
t[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))
/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]]
 + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4
+ a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a
]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]
]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^
3 - x^4]) + (2*a*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-
1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])
*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4
+ a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sq
rt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-
1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + S
qrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[
-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
 Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt
[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]
] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (4*(-Sqrt[-1 -
Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[
((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]]
+ x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 +
 a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sq
rt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)
)]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - S
qrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 -
 Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-
1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 +
 a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]
])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 +
Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((
Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] +
x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a
]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[
4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4
 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) - ((-1 + S
qrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqr
t[4 + a]] + x) + 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[
-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])
*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4
+ a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqr
t[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1
 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sq
rt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-
1 - Sqrt[4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Elli
pticE[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[
-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 +
Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
)^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 +
a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4 + a]])*(-2 - Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1
+ Sqrt[4 + a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[
-1 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + S
qrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2]
)/(2*Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))
+ (4*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sq
rt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqr
t[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]]
 + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[
4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
 a]])^2])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])))/Sqrt[a + 8*x - 8*
x^2 + 4*x^3 - x^4]))/(2*(3 + a)*(4 + a)*(a - x*(-8 + 8*x - 4*x^2 + x^3))^(3/2))

_______________________________________________________________________________________

Maple [B]  time = 0.031, size = 2616, normalized size = 5.5 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x)

[Out]

2*(1/4/(a^2+7*a+12)*x^3+1/4*a/(a^2+7*a+12)*x^2-1/4*(a-2)/(a^2+7*a+12)*x+1/4*a/(a
^2+7*a+12))/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-(2/(a^2+7*a+12)+1/2*(a-2)/(a^2+7*a+12
))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1
+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(
4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/
2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^
(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^
(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/
2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a
)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(
4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1
/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(
1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/
2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(
1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1
/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-((1+a)/(a^2+7*a+12)
-a/(a^2+7*a+12))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1
/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2
))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4
+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1
-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*
(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)
-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(1/2))^
(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/
2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/
2))^(1/2)))^(1/2)*((1-(-1+(4+a)^(1/2))^(1/2))*EllipticF(((-(-1-(4+a)^(1/2))^(1/2
)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-
(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^
(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)
^(1/2))^(1/2)))^(1/2))+2*(-1+(4+a)^(1/2))^(1/2)*EllipticPi(((-(-1-(4+a)^(1/2))^(
1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/
2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),(-(-1-(4+a)^(1/2)
)^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))
,((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(
4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(
1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2)))-1/2/(a^2+7*a+12)*((x-1-(-1+(4+a)^(1
/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2))+((-1-(4+a)
^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))
^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(
1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1
+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+
a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*
(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x
-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)
^(1/2))^(1/2))-(1-(-1-(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)^(1/2))^(1/2))+(1-(-1-(4+a
)^(1/2))^(1/2))*(1-(-1+(4+a)^(1/2))^(1/2))+(1-(-1+(4+a)^(1/2))^(1/2))^2)/(-(-1-(
4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)*EllipticF(((-(-
1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-
(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),(
(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+
a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/
2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-1/2*(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)
^(1/2))^(1/2))*EllipticE(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-
(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-
1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*(
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a
)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))/(-1+(4+a
)^(1/2))^(1/2)-4/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*EllipticPi(((-
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-
1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)
,((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+
a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1
/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/
2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))))/(-(x-1-(-1+(4+a)^(
1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-
(4+a)^(1/2))^(1/2)))^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (-\frac{x}{{\left (x^{4} - 4 \, x^{3} + 8 \, x^{2} - a - 8 \, x\right )} \sqrt{-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2),x, algorithm="fricas")

[Out]

integral(-x/((x^4 - 4*x^3 + 8*x^2 - a - 8*x)*sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x
)), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2),x, algorithm="giac")

[Out]

integrate(x/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2), x)