3.771 \(\int \frac{\sqrt{2 x^2+\sqrt{3+4 x^4}}}{(c+d x) \sqrt{3+4 x^4}} \, dx\)

Optimal. Leaf size=169 \[ \frac{\left (\frac{1}{2}-\frac{i}{2}\right ) \tan ^{-1}\left (\frac{\sqrt{3} d+2 i c x}{\sqrt{\sqrt{3}-2 i x^2} \sqrt{-\sqrt{3} d^2+2 i c^2}}\right )}{\sqrt{-\sqrt{3} d^2+2 i c^2}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{\sqrt{3} d-2 i c x}{\sqrt{\sqrt{3}+2 i x^2} \sqrt{\sqrt{3} d^2+2 i c^2}}\right )}{\sqrt{\sqrt{3} d^2+2 i c^2}} \]

[Out]

((1/2 - I/2)*ArcTan[(Sqrt[3]*d + (2*I)*c*x)/(Sqrt[(2*I)*c^2 - Sqrt[3]*d^2]*Sqrt[
Sqrt[3] - (2*I)*x^2])])/Sqrt[(2*I)*c^2 - Sqrt[3]*d^2] - ((1/2 + I/2)*ArcTanh[(Sq
rt[3]*d - (2*I)*c*x)/(Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]*Sqrt[Sqrt[3] + (2*I)*x^2])])
/Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]

_______________________________________________________________________________________

Rubi [A]  time = 0.469406, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1 \[ \frac{\left (\frac{1}{2}-\frac{i}{2}\right ) \tan ^{-1}\left (\frac{\sqrt{3} d+2 i c x}{\sqrt{\sqrt{3}-2 i x^2} \sqrt{-\sqrt{3} d^2+2 i c^2}}\right )}{\sqrt{-\sqrt{3} d^2+2 i c^2}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{\sqrt{3} d-2 i c x}{\sqrt{\sqrt{3}+2 i x^2} \sqrt{\sqrt{3} d^2+2 i c^2}}\right )}{\sqrt{\sqrt{3} d^2+2 i c^2}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]),x]

[Out]

((1/2 - I/2)*ArcTan[(Sqrt[3]*d + (2*I)*c*x)/(Sqrt[(2*I)*c^2 - Sqrt[3]*d^2]*Sqrt[
Sqrt[3] - (2*I)*x^2])])/Sqrt[(2*I)*c^2 - Sqrt[3]*d^2] - ((1/2 + I/2)*ArcTanh[(Sq
rt[3]*d - (2*I)*c*x)/(Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]*Sqrt[Sqrt[3] + (2*I)*x^2])])
/Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 19.8718, size = 146, normalized size = 0.86 \[ - \frac{\left (1 + i\right ) \operatorname{atanh}{\left (\frac{- 2 i c x + \sqrt{3} d}{\sqrt{2 i c^{2} + \sqrt{3} d^{2}} \sqrt{2 i x^{2} + \sqrt{3}}} \right )}}{2 \sqrt{2 i c^{2} + \sqrt{3} d^{2}}} - \frac{\left (1 - i\right ) \operatorname{atanh}{\left (\frac{2 i c x + \sqrt{3} d}{\sqrt{- 2 i c^{2} + \sqrt{3} d^{2}} \sqrt{- 2 i x^{2} + \sqrt{3}}} \right )}}{2 \sqrt{- 2 i c^{2} + \sqrt{3} d^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((2*x**2+(4*x**4+3)**(1/2))**(1/2)/(d*x+c)/(4*x**4+3)**(1/2),x)

[Out]

-(1 + I)*atanh((-2*I*c*x + sqrt(3)*d)/(sqrt(2*I*c**2 + sqrt(3)*d**2)*sqrt(2*I*x*
*2 + sqrt(3))))/(2*sqrt(2*I*c**2 + sqrt(3)*d**2)) - (1 - I)*atanh((2*I*c*x + sqr
t(3)*d)/(sqrt(-2*I*c**2 + sqrt(3)*d**2)*sqrt(-2*I*x**2 + sqrt(3))))/(2*sqrt(-2*I
*c**2 + sqrt(3)*d**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0951031, size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 x^2+\sqrt{3+4 x^4}}}{(c+d x) \sqrt{3+4 x^4}} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]),x]

[Out]

Integrate[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]), x]

_______________________________________________________________________________________

Maple [F]  time = 0.052, size = 0, normalized size = 0. \[ \int{\frac{1}{dx+c}\sqrt{2\,{x}^{2}+\sqrt{4\,{x}^{4}+3}}{\frac{1}{\sqrt{4\,{x}^{4}+3}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x)

[Out]

int((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{2} + \sqrt{4 \, x^{4} + 3}}}{\sqrt{4 \, x^{4} + 3}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)), x)

_______________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)),x, algorithm="fricas")

[Out]

Timed out

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 x^{2} + \sqrt{4 x^{4} + 3}}}{\left (c + d x\right ) \sqrt{4 x^{4} + 3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*x**2+(4*x**4+3)**(1/2))**(1/2)/(d*x+c)/(4*x**4+3)**(1/2),x)

[Out]

Integral(sqrt(2*x**2 + sqrt(4*x**4 + 3))/((c + d*x)*sqrt(4*x**4 + 3)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{2} + \sqrt{4 \, x^{4} + 3}}}{\sqrt{4 \, x^{4} + 3}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)), x)