[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
2.51
3_Logarithms\3.1u(a+blog(c(d(e+fx)^p)^q))^n
Table 53: Breakdown of results for each integral
2017.3
2016.2
2015.2
18.02
17.02
16.02
14.0
12.0
#
grade
cpu
size
grade
cpu
size
grade
cpu
size
grade
cpu
size
grade
cpu
size
grade
cpu
size
grade
cpu
size
grade
cpu
siz
1
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
2
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
3
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
4
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
5
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
6
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
7
A
0.
80
A
0.01
80
A
0.
80
A
0.
80
A
0.
80
A
0.
80
A
0.
80
A
0.
80
8
C
0.27
1300
C
0.28
1300
C
0.23
1300
C
0.22
1300
C
0.22
1300
C
0.27
1300
C
0.19
1300
C
0.42
1300
9
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
10
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
11
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
12
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
13
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
14
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
15
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
16
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
17
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
18
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
19
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
20
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
21
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
22
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
23
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
24
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
25
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
26
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
27
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
28
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
29
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
30
C
0.06
197
C
0.06
197
C
0.04
197
C
0.04
197
C
0.03
197
C
0.05
197
C
0.03
197
C
0.03
197
31
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
32
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
33
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
34
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
35
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
36
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
37
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
38
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
39
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
40
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
41
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
42
C
0.1
419
C
0.1
419
C
0.08
419
C
0.08
419
F
0
0
F
0
0
F
0
0
F
0
0
43
C
0.02
345
C
0.03
345
C
0.02
345
C
0.02
345
C
0.02
345
C
0.02
345
C
0.01
345
C
0.02
345
44
C
0.01
170
C
0.02
170
C
0.01
170
C
0.01
170
C
0.02
170
C
0.01
170
C
0.01
170
C
0.02
170
45
C
0.01
192
C
0.02
192
C
0.01
192
C
0.01
192
C
0.02
192
C
0.01
192
C
0.01
192
C
0.02
192
46
C
0.02
249
C
0.04
249
C
0.02
249
C
0.02
249
C
0.03
249
C
0.02
249
C
0.01
249
C
0.03
249
47
C
0.01
86
C
0.02
86
C
0.01
86
C
0.01
86
C
0.02
86
C
0.01
86
C
0.01
86
C
0.
86
48
C
0.03
153
C
0.04
153
C
0.02
158
C
0.02
158
C
0.02
158
C
0.02
158
C
0.01
158
C
0.02
158
49
C
0.02
154
C
0.02
154
C
0.01
158
C
0.01
158
C
0.
158
C
0.01
158
C
0.01
158
C
0.02
158
50
C
0.01
94
C
0.01
94
C
0.01
94
C
0.01
94
C
0.
94
C
0.01
94
C
0.
94
C
0.
94
51
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
52
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
53
C
0.01
361
C
0.02
361
C
0.01
361
C
0.01
361
C
0.02
361
C
0.02
361
C
0.01
361
C
0.
361
54
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
F
0
0
55
B
0.04
115
B
0.04
115
B
0.03
115
B
0.02
115
B
0.03
115
B
0.02
115
B
0.02
115
B
0.02
115
56
C
0.03
157
C
0.04
157
C
0.02
161
C
0.02
161
C
0.01
161
C
0.03
161
C
0.01
161
C
0.
161
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]