2.188 7_Inverse_hyperbolic_functions\7.3aInversehyperbolicsecant\7.3.1u(a+barcsech(cx))^n

Table 190: Breakdown of results for each integral
14.1
14
13.3
12.3.1
12.1
12
11.3
11.2
10.3
9
8
7
6.0.1
5.2
# grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size
1 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.2 77 A 0.2 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77 A 0.1 77
2 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63 A 0. 63
3 A 0. 54 A 0. 54 A 0. 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0.1 54 A 0. 54 A 0. 54 A 0. 54
4 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73 A 0.1 73
5 A 0.3 101 A 0.3 101 A 0.3 101 A 0.4 101 A 0.4 101 A 0.4 101 A 0.6 101 A 0.5 101 A 0.4 101 A 0.4 101 A 0.4 101 A 0.3 101 A 0.3 101 A 0.3 101
6 A 0. 75 A 0. 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75 A 0.1 75
7 C 0.1 143 C 0.1 143 C 0.1 143 C 0.2 143 C 0.2 143 C 0.2 143 C 0.3 143 C 0.3 143 C 0.3 143 C 0.3 143 C 0.3 143 C 0.2 143 A 0.2 137 C 0.2 143
8 C 0.1 123 C 0.1 123 C 0.1 123 C 0.1 123 C 0.1 123 C 0.1 123 C 0.2 123 C 0.2 123 C 0.2 123 C 0.2 123 C 0.2 123 C 0.1 123 A 0.1 117 C 0.1 123
9 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 117 A 0.1 123 A 0.1 117 A 0.1 117
10 A 0.1 137 A 0.1 137 A 0.1 137 A 0.1 137 A 0.1 137 A 0.1 137 A 0.1 137 A 0.2 137 A 0.2 137 A 0.2 137 A 0.1 137 A 0.1 144 A 0.1 137 A 0.1 137
11 A 0.1 116 A 0.1 116 A 0.1 116 A 0.2 116 A 0.2 116 A 0.2 116 A 0.2 116 A 0.1 116 A 0.1 116 A 0.1 116 A 0.1 116 A 0.1 116 C 0. 132 C 0. 132
12 A 0.2 134 A 0.2 134 A 0.2 134 A 0.3 134 A 0.3 134 A 0.3 134 A 0.4 134 A 0.3 134 A 0.3 134 A 0.3 134 A 0.2 134 A 0.2 134 A 0.2 134 A 0.2 134
13 A 0.2 165 A 0.2 165 A 0.2 165 A 0.3 165 A 0.3 165 A 0.4 165 A 0.5 165 A 0.6 165 A 0.5 165 A 0.4 165 A 0.4 165 A 0.3 165 A 0.3 165 A 0.3 165
14 C 0.2 190 C 0.2 190 C 0.2 190 C 0.4 190 C 0.4 190 C 0.4 190 C 0.5 190 C 0.6 190 C 0.6 190 C 0.4 190 C 0.4 190 C 0.3 190 A 0.3 184 C 0.3 190
15 A 0.3 142 A 0.2 142 A 0.2 142 A 0.4 122 A 0.3 122 A 0.3 122 A 1.1 134 A 1.1 134 A 0.5 134 A 0.4 134 A 0.3 134 A 0.2 134 A 0.4 131 C 0.1 114
16 C 15.7 1707 C 15.1 1707 C 15.4 1707 C 11.5 1707 C 11.3 1707 C 11.4 1707 C 2.2 286 C 12.2 2256 C 12.2 2256 C 1.8 286 C 1.6 286 C 1.3 286 C 1.8 290 C 10. 1581
17 C 27.2 8675 C 25.4 8675 C 25.5 8675 C 15. 8675 C 14.8 8675 C 14.8 8675 C 13.1 1193 C 13.2 8675 C 13.1 8675 C 13.1 1193 C 10.9 1019 C 9.2 1017 C 11.5 1456 C 12.6 8694
18 A 0.2 127 A 0.2 127 A 0.2 127 A 0.3 107 A 0.2 107 A 0.3 107 A 0.4 119 A 0.4 119 A 0.3 119 A 0.3 119 A 0.2 119 A 0.2 119 A 0.3 116 C 0.1 99
19 A 0.2 170 A 0.2 170 A 0.2 170 A 0.2 170 A 0.2 170 A 0.3 170 A 0.4 170 A 0.4 170 A 0.4 170 A 0.3 170 A 0.2 170 A 0.2 176 A 0.2 183 A 0.2 183
20 C 0.3 207 C 0.3 207 C 0.3 207 C 0.5 207 C 0.4 207 C 0.5 207 C 0.6 207 C 0.7 207 C 0.7 209 C 0.6 209 C 0.5 209 C 0.4 209 A 0.4 202 C 0.4 209
21 A 6.1 875 A 0.7 223 A 0.7 223 A 0.8 212 A 0.8 212 A 0.9 212 A 1.7 239 A 1.6 239 A 1.6 243 A 1.2 243 A 1. 243 A 0.8 245 A 0.7 244 A 0.7 244
22 C 1.4 860 C 1.8 860 C 1.8 860 C 1.2 860 C 1.1 860 C 1.6 860 C 1.9 860 C 2. 860 C 1.8 860 F 0 0 C 6.3 443 C 4.9 443 C 3. 446 C 2.1 446
23 C 2.8 1189 C 3.3 1189 C 3.5 1189 C 3.8 1189 C 3.5 1189 C 6.7 1189 C 9.7 1389 C 9.9 1389 C 8.7 1189 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
24 C 1.1 1323 C 1.2 1323 C 1.3 1323 C 2.1 1303 C 1.9 1303 C 3.7 1303 C 4.5 1315 C 4.1 1315 C 3.7 1315 C 13.3 3207 C 4.2 944 F 0 0 F 0 0 F 0 0
25 C 0.7 1216 C 0.8 1216 C 0.8 1216 C 1.4 1216 C 1.3 1216 C 6.1 1351 C 5.6 1216 C 6. 1351 C 5.5 1216 F 0 0 C 8.2 2436 F 0 0 F 0 0 F 0 0
26 C 1. 486 C 1.1 486 C 1.1 486 C 1.5 486 C 1.4 486 C 1.7 486 C 3. 486 C 3.2 486 C 2.9 486 C 2.9 486 C 1.8 486 C 1.6 494 A 0.8 318 C 2.2 690
27 C 0.7 486 C 0.7 486 C 0.7 486 C 1.1 486 C 1. 486 C 1.2 486 C 1.9 486 C 2.1 486 C 1.8 486 C 2. 486 C 1.3 486 C 1.2 494 A 0.7 310 C 1.9 713
28 C 6.2 1823 C 6.7 1823 C 7.2 1823 C 7.7 2022 C 7.4 2022 C 7.8 2022 C 8.3 2022 C 8.5 2022 C 8.2 2024 F 0 0 C 7.6 1782 F 0 0 F 0 0 F 0 0
29 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
30 F 0 0 C 24. 501 C 24.1 501 C 4.3 501 C 4. 501 C 9.3 501 C 5.1 501 C 5.5 501 C 6.1 486 C 5.8 486 C 4.3 486 C 3.7 486 C 2.8 472 C 1.7 481
31 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
32 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
33 F 0 0 A 22.2 348 A 22.3 348 A 2.2 348 A 2. 348 A 2.3 348 C 3.1 313 C 4.9 639 C 4.6 682 C 4.8 313 C 1.9 313 C 1.6 305 A 1.3 294 C 2.4 686
34 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
35 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0
36 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0 F 0 0