1_Algebraic_functions\1.2Trinomialproducts\1.2.2Quartic\1.2.2.5Pq(x)(a+bx^2+cx^4)^p
14.1
| 14
| 13.3
| 12.3.1
| 12.1
| 12
| 11.3
| 11.2
| 10.3
| 9
| 8
| 7
| 6.0.1
| 5.2
| |||||||||||||||||||||||||||||
# | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size | grade | cpu | size |
1 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 | A | 0. | 50 |
2 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0.1 | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 | A | 0. | 69 |
3 | A | 0. | 196 | A | 0. | 196 | A | 0. | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0.1 | 196 | A | 0. | 196 | A | 0. | 196 |
4 | A | 0.1 | 98 | A | 0. | 98 | A | 0. | 98 | A | 0.1 | 98 | A | 0.1 | 98 | A | 0.1 | 98 | A | 0.1 | 98 | A | 0.1 | 98 | A | 0.1 | 99 | A | 0.1 | 99 | A | 0.1 | 99 | A | 0.1 | 95 | A | 0. | 112 | A | 0.1 | 112 |
5 | C | 0.1 | 98 | C | 0.1 | 98 | C | 0.1 | 98 | C | 0.2 | 98 | C | 0.2 | 98 | C | 0.2 | 98 | C | 0.3 | 98 | C | 0.3 | 98 | C | 0.3 | 98 | C | 0.3 | 98 | A | 0.1 | 75 | C | 0.3 | 98 | C | 0.3 | 98 | C | 0.1 | 112 |
6 | C | 0.1 | 121 | C | 0.1 | 121 | C | 0.1 | 121 | C | 0.2 | 121 | C | 0.1 | 121 | C | 0.2 | 121 | C | 0.2 | 121 | C | 0.2 | 121 | C | 0.2 | 121 | C | 0.2 | 121 | A | 0.1 | 81 | C | 0.2 | 121 | C | 0.2 | 121 | C | 0.1 | 135 |
7 | C | 0.4 | 165 | C | 0.4 | 165 | C | 0.4 | 165 | C | 0.7 | 165 | C | 0.6 | 165 | C | 0.6 | 165 | C | 1.1 | 165 | C | 1.1 | 165 | C | 1.2 | 195 | C | 1.4 | 195 | A | 0.1 | 101 | C | 1.1 | 197 | C | 1.1 | 195 | C | 0.5 | 235 |
8 | A | 0.8 | 816 | A | 0.7 | 816 | A | 0.7 | 816 | A | 1.7 | 816 | A | 1.6 | 816 | A | 1.6 | 816 | A | 2.9 | 816 | A | 3.3 | 816 | A | 3.2 | 816 | A | 2.5 | 816 | A | 1.9 | 816 | A | 3. | 816 | A | 1.5 | 816 | A | 1.3 | 816 |
9 | A | 0.9 | 421 | A | 0.9 | 421 | A | 0.9 | 421 | A | 1.8 | 421 | A | 1.7 | 421 | A | 1.7 | 421 | A | 2.8 | 421 | A | 2.9 | 421 | A | 2.8 | 422 | A | 5.2 | 422 | A | 2.2 | 422 | A | 2. | 422 | A | 2. | 422 | A | 1.7 | 422 |
10 | A | 0.1 | 193 | A | 0.1 | 193 | A | 0.1 | 193 | A | 0.1 | 193 | A | 0.1 | 193 | A | 0.1 | 193 | A | 0.2 | 193 | A | 0.2 | 193 | A | 0.2 | 194 | A | 0.1 | 194 | A | 0.1 | 194 | A | 0.1 | 190 | A | 0.1 | 190 | A | 0.1 | 190 |
11 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.2 | 416 | A | 0.2 | 416 | A | 0.2 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0.1 | 416 | A | 0. | 416 | A | 0. | 416 |
12 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 45 | A | 0. | 47 | A | 0. | 47 |
13 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0.1 | 92 | A | 0.1 | 92 | A | 0.1 | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 | A | 0. | 92 |
14 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 29 | A | 0. | 25 | A | 0. | 25 | A | 0. | 25 |
15 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 48 | A | 0. | 52 | A | 0. | 44 | A | 0. | 44 |
16 | A | 0. | 114 | A | 0. | 114 | A | 0. | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 114 | A | 0.1 | 110 | A | 0.1 | 110 | A | 0.1 | 128 |
17 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0.1 | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 60 | A | 0. | 56 | A | 0. | 56 | A | 0. | 56 |
18 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 97 | A | 0.1 | 93 | A | 0.1 | 93 | A | 0.1 | 93 |
19 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 144 | A | 0.1 | 140 | A | 0.1 | 140 | A | 0.1 | 140 |
20 | C | 33.5 | 2588 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | C | 4.8 | 2588 | C | 5.2 | 2588 | C | 6.5 | 2767 | C | 6.4 | 2767 | C | 6.4 | 2767 | C | 5.9 | 871 | C | 5.8 | 871 | C | 5. | 873 |
21 | C | 88.5 | 598 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | C | 4.5 | 598 | C | 4.6 | 598 | C | 4.7 | 648 | C | 6.3 | 2053 | C | 3.6 | 648 | C | 3.1 | 648 | C | 3.9 | 648 | C | 3.4 | 648 |
22 | A | 10.5 | 19 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | F | 0 | 0 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 | A | 0. | 19 |
23 | A | 10.2 | 61 | A | 10.2 | 61 | A | 10.2 | 61 | A | 0.3 | 61 | A | 0.3 | 61 | A | 5.1 | 61 | A | 0.1 | 61 | A | 0.1 | 61 | A | 0.1 | 61 | A | 0.1 | 61 | A | 0.1 | 61 | A | 0. | 61 | A | 0.1 | 61 | A | 0.1 | 97 |