2.39 1_Algebraic_functions\1.2Trinomialproducts\1.2.3General\1.2.3.4(fx)^m(d+ex^n)^q(a+bx^n+cx^(2n))^p

Table 41: Breakdown of results for each integral
14.1
14
13.3
12.3.1
12.1
12
11.3
11.2
10.3
9
8
7
6.0.1
5.2
# grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size grade cpu size
1 A 0. 135 A 0. 135 A 0. 135 A 0. 135 A 0. 135 A 0. 135 A 0.1 135 A 0.1 135 A 0.1 135 A 0.1 135 A 0. 135 A 0. 135 A 0. 135 A 0. 135
2 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0.1 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104 A 0. 104
3 A 0.2 209 A 0.2 209 A 0.2 209 A 0.3 209 A 0.3 209 A 0.4 209 A 0.5 209 A 0.5 209 A 0.4 220 A 0.3 220 A 0.3 220 A 0.2 220 A 0.3 220 A 0.2 220
4 A 0.1 126 A 0. 126 A 0. 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126 A 0.1 126
5 A 0.1 93 A 0. 93 A 0. 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93 A 0.1 93
6 A 0. 71 A 0. 71 A 0. 71 A 0.1 71 A 0. 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0.1 71 A 0. 71
7 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31 A 0. 31
8 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55 C 0. 55
9 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47
10 C 5.4 98 C 4.9 98 C 5. 98 C 0.2 98 C 0.1 98 C 0.2 98 C 0.5 219 C 0.5 219 C 0.4 220 C 0.4 220 C 0.3 220 C 0.3 220 C 0.5 215 C 0.4 215
11 C 0.1 61 C 0. 61 C 0. 61 C 0.1 61 C 0.1 61 C 0. 61 C 0.1 61 C 0.1 61 C 0.1 61 C 0.1 61 C 0.1 61 C 0. 61 C 0. 61 C 0.1 61
12 C 0.1 80 C 0. 80 C 0. 80 C 0. 80 C 0. 80 C 0. 80 C 0.1 80 C 0.1 80 C 0.1 80 C 0. 80 C 0. 80 C 0. 80 C 0. 80 C 0. 80
13 C 0.1 85 C 0. 85 C 0. 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85 C 0.1 85
14 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57 C 0. 57
15 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47 C 0. 47
16 A 0.5 249 A 0.3 249 A 0.3 249 A 0.4 249 A 0.3 249 A 0.5 249 A 0.7 249 A 0.7 249 A 0.6 249 A 0.6 249 A 0.4 249 A 0.4 249 A 0.4 249 A 0.3 249
17 A 0.4 189 A 0.1 189 A 0.2 189 A 0.2 189 A 0.2 189 A 0.2 189 A 0.3 189 A 0.3 189 A 0.3 189 A 0.3 189 A 0.2 189 A 0.2 189 A 0.2 189 A 0.2 189
18 A 3.1 22 A 0.1 22 A 0.1 22 A 0.1 22 A 0.1 22 A 0.1 22 B 0.7 260 B 0.8 260 B 0.7 260 B 0.5 260 B 0.5 260 B 0.3 260 B 0.4 260 B 0.3 260
19 A 0.3 33 A 0. 33 A 0. 33 A 0.1 19 A 0.1 19 A 0.1 19 A 0.1 26 A 0.1 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 B 0. 40 A 0. 18
20 A 0.3 22 A 0.1 22 A 0.1 22 A 0.1 22 A 0.1 22 A 0.1 22 A 0.1 23 A 0.1 23 A 0.1 23 A 0. 23 A 0. 23 A 0. 23 A 0. 23 A 0.1 23
21 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19
22 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19 A 0. 19
23 A 0.3 34 A 0. 34 A 0. 34 A 0.1 21 A 0.1 21 A 0.1 21 A 0. 29 A 0. 29 A 0. 29 A 0. 29 A 0. 29 A 0. 29 B 0. 43 A 0. 20
24 A 0.3 27 A 0. 27 A 0. 27 A 0. 27 A 0. 27 A 0. 27 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0.1 26 A 0. 26
25 A 0.8 27 A 0.1 27 A 0.1 27 A 0. 27 A 0. 27 A 0. 27 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26 A 0. 26
26 A 0.3 28 A 0.1 28 A 0.1 28 A 0. 28 A 0. 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28 A 0.1 28
27 A 1.9 391 A 1.2 391 A 1.2 391 A 1.3 391 A 1.2 391 A 1.3 391 B 21.8 1615 A 1.6 391 A 1.5 391 A 0.8 330 A 0.7 330 A 0.6 330 A 0.6 330 A 0.4 330