3.3.55 \(\int (d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}})^{3/2} \, dx\)

Optimal. Leaf size=302 \[ -\frac {3 f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {2 d e-b f^2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{\sqrt {2 d e-b f^2}}\right )}{8 \sqrt {2} e^{7/2}}+\frac {f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{4 e^3}-\frac {f^2 \left (4 a e^2-b^2 f^2\right ) \left (2 d e-b f^2\right ) \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{8 e^3 \left (2 e \left (f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}+e x\right )+b f^2\right )}+\frac {\left (f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x\right )^{5/2}}{5 e} \]

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 302, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2116, 897, 1257, 1810, 208} \begin {gather*} \frac {f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{4 e^3}-\frac {f^2 \left (4 a e^2-b^2 f^2\right ) \left (2 d e-b f^2\right ) \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{8 e^3 \left (2 e \left (f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}+e x\right )+b f^2\right )}-\frac {3 f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {2 d e-b f^2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{\sqrt {2 d e-b f^2}}\right )}{8 \sqrt {2} e^{7/2}}+\frac {\left (f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x\right )^{5/2}}{5 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2])^(3/2),x]

[Out]

(f^2*(4*a*e^2 - b^2*f^2)*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]])/(4*e^3) + (d + e*x + f*Sqrt[a + b*x
+ (e^2*x^2)/f^2])^(5/2)/(5*e) - (f^2*(2*d*e - b*f^2)*(4*a*e^2 - b^2*f^2)*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*
x^2)/f^2]])/(8*e^3*(b*f^2 + 2*e*(e*x + f*Sqrt[a + (x*(b*f^2 + e^2*x))/f^2]))) - (3*f^2*Sqrt[2*d*e - b*f^2]*(4*
a*e^2 - b^2*f^2)*ArcTanh[(Sqrt[2]*Sqrt[e]*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]])/Sqrt[2*d*e - b*f^2]
])/(8*Sqrt[2]*e^(7/2))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 897

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + (g*x^q)/e)^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - ((2*c*d - b*e)*x^q)/e^2 + (c*x^(2*q))/e^2)^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1257

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((-d)^
(m/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*x*(d + e*x^2)^(q + 1))/(2*e^(2*p + m/2)*(q + 1)), x] + Dist[1/(2*e^(2*p +
m/2)*(q + 1)), Int[(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1*(2*e^(2*p + m/2)*(q + 1)*x^m*(a + b*x^2 + c*x^4
)^p - (-d)^(m/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*(d + e*(2*q + 3)*x^2)))/(d + e*x^2)], x], x], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && ILtQ[q, -1] && IGtQ[m/2, 0]

Rule 1810

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 2116

Int[((g_.) + (h_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])^(n_))^(p_.), x_Symbol]
 :> Dist[2, Subst[Int[((g + h*x^n)^p*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x + e*x^2))/(-2*d*e + b*f^2 +
2*e*x)^2, x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && EqQ[e^2 -
c*f^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \left (d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}\right )^{3/2} \, dx &=2 \operatorname {Subst}\left (\int \frac {x^{3/2} \left (d^2 e-(b d-a e) f^2-\left (2 d e-b f^2\right ) x+e x^2\right )}{\left (-2 d e+b f^2+2 e x\right )^2} \, dx,x,d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}\right )\\ &=4 \operatorname {Subst}\left (\int \frac {x^4 \left (d^2 e-(b d-a e) f^2+\left (-2 d e+b f^2\right ) x^2+e x^4\right )}{\left (-2 d e+b f^2+2 e x^2\right )^2} \, dx,x,\sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}\right )\\ &=-\frac {f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{8 e^3 \left (b f^2+2 e \left (e x+f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}\right )\right )}-\frac {\operatorname {Subst}\left (\int \frac {-e f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right )-4 e^2 f^2 \left (4 a e^2-b^2 f^2\right ) x^2+8 e^3 \left (2 d e-b f^2\right ) x^4-16 e^4 x^6}{-2 d e+b f^2+2 e x^2} \, dx,x,\sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}\right )}{8 e^4}\\ &=-\frac {f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{8 e^3 \left (b f^2+2 e \left (e x+f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}\right )\right )}-\frac {\operatorname {Subst}\left (\int \left (-2 e f^2 \left (4 a e^2-b^2 f^2\right )-8 e^3 x^4-\frac {3 \left (8 a d e^4 f^2-2 b^2 d e^2 f^4-4 a b e^3 f^4+b^3 e f^6\right )}{-2 d e+b f^2+2 e x^2}\right ) \, dx,x,\sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}\right )}{8 e^4}\\ &=\frac {f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{4 e^3}+\frac {\left (d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}\right )^{5/2}}{5 e}-\frac {f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{8 e^3 \left (b f^2+2 e \left (e x+f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}\right )\right )}+\frac {\left (3 f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-2 d e+b f^2+2 e x^2} \, dx,x,\sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}\right )}{8 e^3}\\ &=\frac {f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{4 e^3}+\frac {\left (d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}\right )^{5/2}}{5 e}-\frac {f^2 \left (2 d e-b f^2\right ) \left (4 a e^2-b^2 f^2\right ) \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{8 e^3 \left (b f^2+2 e \left (e x+f \sqrt {a+\frac {x \left (b f^2+e^2 x\right )}{f^2}}\right )\right )}-\frac {3 f^2 \sqrt {2 d e-b f^2} \left (4 a e^2-b^2 f^2\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {d+e x+f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}}}{\sqrt {2 d e-b f^2}}\right )}{8 \sqrt {2} e^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.57, size = 291, normalized size = 0.96 \begin {gather*} \frac {2 e f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {f \sqrt {a+x \left (b+\frac {e^2 x}{f^2}\right )}+d+e x}-\frac {3 \sqrt {e} f^2 \left (4 a e^2-b^2 f^2\right ) \sqrt {2 d e-b f^2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {f \sqrt {a+x \left (b+\frac {e^2 x}{f^2}\right )}+d+e x}}{\sqrt {2 d e-b f^2}}\right )}{\sqrt {2}}-\frac {\left (4 a e^3 f^2-b^2 e f^4\right ) \left (2 d e-b f^2\right ) \sqrt {f \sqrt {a+x \left (b+\frac {e^2 x}{f^2}\right )}+d+e x}}{2 e \left (f \sqrt {a+x \left (b+\frac {e^2 x}{f^2}\right )}+e x\right )+b f^2}+\frac {8}{5} e^3 \left (f \sqrt {a+x \left (b+\frac {e^2 x}{f^2}\right )}+d+e x\right )^{5/2}}{8 e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2])^(3/2),x]

[Out]

(2*e*f^2*(4*a*e^2 - b^2*f^2)*Sqrt[d + e*x + f*Sqrt[a + x*(b + (e^2*x)/f^2)]] + (8*e^3*(d + e*x + f*Sqrt[a + x*
(b + (e^2*x)/f^2)])^(5/2))/5 - ((2*d*e - b*f^2)*(4*a*e^3*f^2 - b^2*e*f^4)*Sqrt[d + e*x + f*Sqrt[a + x*(b + (e^
2*x)/f^2)]])/(b*f^2 + 2*e*(e*x + f*Sqrt[a + x*(b + (e^2*x)/f^2)])) - (3*Sqrt[e]*f^2*Sqrt[2*d*e - b*f^2]*(4*a*e
^2 - b^2*f^2)*ArcTanh[(Sqrt[2]*Sqrt[e]*Sqrt[d + e*x + f*Sqrt[a + x*(b + (e^2*x)/f^2)]])/Sqrt[2*d*e - b*f^2]])/
Sqrt[2])/(8*e^4)

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 3.68, size = 725, normalized size = 2.40 \begin {gather*} -\frac {3 b^3 f^6 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {b f^2-2 d e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{2 d e-b f^2}\right )}{8 \sqrt {2} e^{7/2} \sqrt {b f^2-2 d e}}+\frac {3 b^2 d f^4 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {b f^2-2 d e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{2 d e-b f^2}\right )}{4 \sqrt {2} e^{5/2} \sqrt {b f^2-2 d e}}+\frac {\sqrt {a+b x+\frac {e^2 x^2}{f^2}} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x} \left (96 a e^3 f^3-20 b^2 e f^5+16 b d e^2 f^3+32 b e^3 f^3 x+16 d^2 e^3 f+64 d e^4 f x+64 e^5 f x^2\right )+\left (68 a b e^2 f^4-8 a d e^3 f^2+128 a e^4 f^2 x-15 b^3 f^6+10 b^2 d e f^4-12 b^2 e^2 f^4 x+8 b d^2 e^2 f^2+48 b d e^3 f^2 x+64 b e^4 f^2 x^2+16 d^2 e^4 x+64 d e^5 x^2+64 e^6 x^3\right ) \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{80 e^4 f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+40 e^3 \left (b f^2+2 e^2 x\right )}-\frac {3 a d f^2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {b f^2-2 d e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{2 d e-b f^2}\right )}{\sqrt {2} \sqrt {e} \sqrt {b f^2-2 d e}}+\frac {3 a b f^4 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e} \sqrt {b f^2-2 d e} \sqrt {f \sqrt {a+b x+\frac {e^2 x^2}{f^2}}+d+e x}}{2 d e-b f^2}\right )}{2 \sqrt {2} e^{3/2} \sqrt {b f^2-2 d e}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2])^(3/2),x]

[Out]

(Sqrt[a + b*x + (e^2*x^2)/f^2]*(16*d^2*e^3*f + 16*b*d*e^2*f^3 + 96*a*e^3*f^3 - 20*b^2*e*f^5 + 64*d*e^4*f*x + 3
2*b*e^3*f^3*x + 64*e^5*f*x^2)*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]] + (8*b*d^2*e^2*f^2 - 8*a*d*e^3*f
^2 + 10*b^2*d*e*f^4 + 68*a*b*e^2*f^4 - 15*b^3*f^6 + 16*d^2*e^4*x + 48*b*d*e^3*f^2*x + 128*a*e^4*f^2*x - 12*b^2
*e^2*f^4*x + 64*d*e^5*x^2 + 64*b*e^4*f^2*x^2 + 64*e^6*x^3)*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]])/(4
0*e^3*(b*f^2 + 2*e^2*x) + 80*e^4*f*Sqrt[a + b*x + (e^2*x^2)/f^2]) - (3*a*d*f^2*ArcTan[(Sqrt[2]*Sqrt[e]*Sqrt[-2
*d*e + b*f^2]*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]])/(2*d*e - b*f^2)])/(Sqrt[2]*Sqrt[e]*Sqrt[-2*d*e
+ b*f^2]) + (3*b^2*d*f^4*ArcTan[(Sqrt[2]*Sqrt[e]*Sqrt[-2*d*e + b*f^2]*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2
)/f^2]])/(2*d*e - b*f^2)])/(4*Sqrt[2]*e^(5/2)*Sqrt[-2*d*e + b*f^2]) + (3*a*b*f^4*ArcTan[(Sqrt[2]*Sqrt[e]*Sqrt[
-2*d*e + b*f^2]*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x^2)/f^2]])/(2*d*e - b*f^2)])/(2*Sqrt[2]*e^(3/2)*Sqrt[-2*
d*e + b*f^2]) - (3*b^3*f^6*ArcTan[(Sqrt[2]*Sqrt[e]*Sqrt[-2*d*e + b*f^2]*Sqrt[d + e*x + f*Sqrt[a + b*x + (e^2*x
^2)/f^2]])/(2*d*e - b*f^2)])/(8*Sqrt[2]*e^(7/2)*Sqrt[-2*d*e + b*f^2])

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 657, normalized size = 2.18 \begin {gather*} \left [-\frac {15 \, \sqrt {\frac {1}{2}} {\left (b^{2} f^{4} - 4 \, a e^{2} f^{2}\right )} \sqrt {-\frac {b f^{2} - 2 \, d e}{e}} \log \left (-b^{2} f^{4} + 4 \, {\left (b d e - a e^{2}\right )} f^{2} - 4 \, {\left (b e^{2} f^{2} - 2 \, d e^{3}\right )} x + 4 \, {\left (2 \, \sqrt {\frac {1}{2}} e^{2} f \sqrt {-\frac {b f^{2} - 2 \, d e}{e}} \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}} - \sqrt {\frac {1}{2}} {\left (b e f^{2} + 2 \, e^{3} x\right )} \sqrt {-\frac {b f^{2} - 2 \, d e}{e}}\right )} \sqrt {e x + f \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}} + d} + 4 \, {\left (b e f^{3} - 2 \, d e^{2} f\right )} \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}}\right ) + 2 \, {\left (15 \, b^{2} f^{4} - 16 \, e^{4} x^{2} - 8 \, d^{2} e^{2} - 2 \, {\left (5 \, b d e + 24 \, a e^{2}\right )} f^{2} + 2 \, {\left (b e^{2} f^{2} - 18 \, d e^{3}\right )} x - 2 \, {\left (5 \, b e f^{3} + 8 \, e^{3} f x - 2 \, d e^{2} f\right )} \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}}\right )} \sqrt {e x + f \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}} + d}}{80 \, e^{3}}, \frac {15 \, \sqrt {\frac {1}{2}} {\left (b^{2} f^{4} - 4 \, a e^{2} f^{2}\right )} \sqrt {\frac {b f^{2} - 2 \, d e}{e}} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {e x + f \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}} + d} e \sqrt {\frac {b f^{2} - 2 \, d e}{e}}}{b f^{2} - 2 \, d e}\right ) - {\left (15 \, b^{2} f^{4} - 16 \, e^{4} x^{2} - 8 \, d^{2} e^{2} - 2 \, {\left (5 \, b d e + 24 \, a e^{2}\right )} f^{2} + 2 \, {\left (b e^{2} f^{2} - 18 \, d e^{3}\right )} x - 2 \, {\left (5 \, b e f^{3} + 8 \, e^{3} f x - 2 \, d e^{2} f\right )} \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}}\right )} \sqrt {e x + f \sqrt {\frac {b f^{2} x + e^{2} x^{2} + a f^{2}}{f^{2}}} + d}}{40 \, e^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+b*x+e^2*x^2/f^2)^(1/2))^(3/2),x, algorithm="fricas")

[Out]

[-1/80*(15*sqrt(1/2)*(b^2*f^4 - 4*a*e^2*f^2)*sqrt(-(b*f^2 - 2*d*e)/e)*log(-b^2*f^4 + 4*(b*d*e - a*e^2)*f^2 - 4
*(b*e^2*f^2 - 2*d*e^3)*x + 4*(2*sqrt(1/2)*e^2*f*sqrt(-(b*f^2 - 2*d*e)/e)*sqrt((b*f^2*x + e^2*x^2 + a*f^2)/f^2)
 - sqrt(1/2)*(b*e*f^2 + 2*e^3*x)*sqrt(-(b*f^2 - 2*d*e)/e))*sqrt(e*x + f*sqrt((b*f^2*x + e^2*x^2 + a*f^2)/f^2)
+ d) + 4*(b*e*f^3 - 2*d*e^2*f)*sqrt((b*f^2*x + e^2*x^2 + a*f^2)/f^2)) + 2*(15*b^2*f^4 - 16*e^4*x^2 - 8*d^2*e^2
 - 2*(5*b*d*e + 24*a*e^2)*f^2 + 2*(b*e^2*f^2 - 18*d*e^3)*x - 2*(5*b*e*f^3 + 8*e^3*f*x - 2*d*e^2*f)*sqrt((b*f^2
*x + e^2*x^2 + a*f^2)/f^2))*sqrt(e*x + f*sqrt((b*f^2*x + e^2*x^2 + a*f^2)/f^2) + d))/e^3, 1/40*(15*sqrt(1/2)*(
b^2*f^4 - 4*a*e^2*f^2)*sqrt((b*f^2 - 2*d*e)/e)*arctan(2*sqrt(1/2)*sqrt(e*x + f*sqrt((b*f^2*x + e^2*x^2 + a*f^2
)/f^2) + d)*e*sqrt((b*f^2 - 2*d*e)/e)/(b*f^2 - 2*d*e)) - (15*b^2*f^4 - 16*e^4*x^2 - 8*d^2*e^2 - 2*(5*b*d*e + 2
4*a*e^2)*f^2 + 2*(b*e^2*f^2 - 18*d*e^3)*x - 2*(5*b*e*f^3 + 8*e^3*f*x - 2*d*e^2*f)*sqrt((b*f^2*x + e^2*x^2 + a*
f^2)/f^2))*sqrt(e*x + f*sqrt((b*f^2*x + e^2*x^2 + a*f^2)/f^2) + d))/e^3]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (e x + \sqrt {b x + \frac {e^{2} x^{2}}{f^{2}} + a} f + d\right )}^{\frac {3}{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+b*x+e^2*x^2/f^2)^(1/2))^(3/2),x, algorithm="giac")

[Out]

integrate((e*x + sqrt(b*x + e^2*x^2/f^2 + a)*f + d)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \begin {gather*} \int \left (e x +d +\sqrt {b x +\frac {e^{2} x^{2}}{f^{2}}+a}\, f \right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d+(b*x+e^2/f^2*x^2+a)^(1/2)*f)^(3/2),x)

[Out]

int((e*x+d+(b*x+e^2/f^2*x^2+a)^(1/2)*f)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (e x + \sqrt {b x + \frac {e^{2} x^{2}}{f^{2}} + a} f + d\right )}^{\frac {3}{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+b*x+e^2*x^2/f^2)^(1/2))^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + sqrt(b*x + e^2*x^2/f^2 + a)*f + d)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (d+e\,x+f\,\sqrt {a+b\,x+\frac {e^2\,x^2}{f^2}}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*(a + b*x + (e^2*x^2)/f^2)^(1/2))^(3/2),x)

[Out]

int((d + e*x + f*(a + b*x + (e^2*x^2)/f^2)^(1/2))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (d + e x + f \sqrt {a + b x + \frac {e^{2} x^{2}}{f^{2}}}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+b*x+e**2*x**2/f**2)**(1/2))**(3/2),x)

[Out]

Integral((d + e*x + f*sqrt(a + b*x + e**2*x**2/f**2))**(3/2), x)

________________________________________________________________________________________