3.7.5 \(\int \frac {\sqrt {2 x^2+\sqrt {3+4 x^4}}}{(c+d x) \sqrt {3+4 x^4}} \, dx\)

Optimal. Leaf size=169 \[ \frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tan ^{-1}\left (\frac {\sqrt {3} d+2 i c x}{\sqrt {\sqrt {3}-2 i x^2} \sqrt {-\sqrt {3} d^2+2 i c^2}}\right )}{\sqrt {-\sqrt {3} d^2+2 i c^2}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {\sqrt {3} d-2 i c x}{\sqrt {\sqrt {3}+2 i x^2} \sqrt {\sqrt {3} d^2+2 i c^2}}\right )}{\sqrt {\sqrt {3} d^2+2 i c^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2133, 725, 204, 206} \begin {gather*} \frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tan ^{-1}\left (\frac {\sqrt {3} d+2 i c x}{\sqrt {\sqrt {3}-2 i x^2} \sqrt {-\sqrt {3} d^2+2 i c^2}}\right )}{\sqrt {-\sqrt {3} d^2+2 i c^2}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {\sqrt {3} d-2 i c x}{\sqrt {\sqrt {3}+2 i x^2} \sqrt {\sqrt {3} d^2+2 i c^2}}\right )}{\sqrt {\sqrt {3} d^2+2 i c^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]),x]

[Out]

((1/2 - I/2)*ArcTan[(Sqrt[3]*d + (2*I)*c*x)/(Sqrt[(2*I)*c^2 - Sqrt[3]*d^2]*Sqrt[Sqrt[3] - (2*I)*x^2])])/Sqrt[(
2*I)*c^2 - Sqrt[3]*d^2] - ((1/2 + I/2)*ArcTanh[(Sqrt[3]*d - (2*I)*c*x)/(Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]*Sqrt[Sqr
t[3] + (2*I)*x^2])])/Sqrt[(2*I)*c^2 + Sqrt[3]*d^2]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 2133

Int[(((c_.) + (d_.)*(x_))^(m_.)*Sqrt[(b_.)*(x_)^2 + Sqrt[(a_) + (e_.)*(x_)^4]])/Sqrt[(a_) + (e_.)*(x_)^4], x_S
ymbol] :> Dist[(1 - I)/2, Int[(c + d*x)^m/Sqrt[Sqrt[a] - I*b*x^2], x], x] + Dist[(1 + I)/2, Int[(c + d*x)^m/Sq
rt[Sqrt[a] + I*b*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[e, b^2] && GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {2 x^2+\sqrt {3+4 x^4}}}{(c+d x) \sqrt {3+4 x^4}} \, dx &=\left (\frac {1}{2}-\frac {i}{2}\right ) \int \frac {1}{(c+d x) \sqrt {\sqrt {3}-2 i x^2}} \, dx+\left (\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(c+d x) \sqrt {\sqrt {3}+2 i x^2}} \, dx\\ &=\left (-\frac {1}{2}-\frac {i}{2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 i c^2+\sqrt {3} d^2-x^2} \, dx,x,\frac {\sqrt {3} d-2 i c x}{\sqrt {\sqrt {3}+2 i x^2}}\right )+\left (-\frac {1}{2}+\frac {i}{2}\right ) \operatorname {Subst}\left (\int \frac {1}{-2 i c^2+\sqrt {3} d^2-x^2} \, dx,x,\frac {\sqrt {3} d+2 i c x}{\sqrt {\sqrt {3}-2 i x^2}}\right )\\ &=\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tan ^{-1}\left (\frac {\sqrt {3} d+2 i c x}{\sqrt {2 i c^2-\sqrt {3} d^2} \sqrt {\sqrt {3}-2 i x^2}}\right )}{\sqrt {2 i c^2-\sqrt {3} d^2}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {\sqrt {3} d-2 i c x}{\sqrt {2 i c^2+\sqrt {3} d^2} \sqrt {\sqrt {3}+2 i x^2}}\right )}{\sqrt {2 i c^2+\sqrt {3} d^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.11, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 x^2+\sqrt {3+4 x^4}}}{(c+d x) \sqrt {3+4 x^4}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]),x]

[Out]

Integrate[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]), x]

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 1.17, size = 364, normalized size = 2.15 \begin {gather*} c \text {RootSum}\left [\text {$\#$1}^4 d^2-8 \text {$\#$1}^3 c^2-6 \text {$\#$1}^2 d^2-24 \text {$\#$1} c^2+9 d^2\&,\frac {\text {$\#$1}^2 \left (-\log \left (-\text {$\#$1}+\sqrt {4 x^4+3}+2 x^2+2 \sqrt {\sqrt {4 x^4+3}+2 x^2} x\right )\right )-3 \log \left (-\text {$\#$1}+\sqrt {4 x^4+3}+2 x^2+2 \sqrt {\sqrt {4 x^4+3}+2 x^2} x\right )}{\text {$\#$1}^3 d^2-6 \text {$\#$1}^2 c^2-3 \text {$\#$1} d^2-6 c^2}\&\right ]-\frac {\sqrt {-\sqrt {4 c^4+3 d^4}-2 c^2} \tan ^{-1}\left (\frac {d \sqrt {\sqrt {4 x^4+3}+2 x^2}}{\sqrt {-\sqrt {4 c^4+3 d^4}-2 c^2}}\right )}{\sqrt {4 c^4+3 d^4}}+\frac {\sqrt {\sqrt {4 c^4+3 d^4}-2 c^2} \tan ^{-1}\left (\frac {d \sqrt {\sqrt {4 x^4+3}+2 x^2}}{\sqrt {\sqrt {4 c^4+3 d^4}-2 c^2}}\right )}{\sqrt {4 c^4+3 d^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[2*x^2 + Sqrt[3 + 4*x^4]]/((c + d*x)*Sqrt[3 + 4*x^4]),x]

[Out]

-((Sqrt[-2*c^2 - Sqrt[4*c^4 + 3*d^4]]*ArcTan[(d*Sqrt[2*x^2 + Sqrt[3 + 4*x^4]])/Sqrt[-2*c^2 - Sqrt[4*c^4 + 3*d^
4]]])/Sqrt[4*c^4 + 3*d^4]) + (Sqrt[-2*c^2 + Sqrt[4*c^4 + 3*d^4]]*ArcTan[(d*Sqrt[2*x^2 + Sqrt[3 + 4*x^4]])/Sqrt
[-2*c^2 + Sqrt[4*c^4 + 3*d^4]]])/Sqrt[4*c^4 + 3*d^4] + c*RootSum[9*d^2 - 24*c^2*#1 - 6*d^2*#1^2 - 8*c^2*#1^3 +
 d^2*#1^4 & , (-3*Log[2*x^2 + Sqrt[3 + 4*x^4] + 2*x*Sqrt[2*x^2 + Sqrt[3 + 4*x^4]] - #1] - Log[2*x^2 + Sqrt[3 +
 4*x^4] + 2*x*Sqrt[2*x^2 + Sqrt[3 + 4*x^4]] - #1]*#1^2)/(-6*c^2 - 3*d^2*#1 - 6*c^2*#1^2 + d^2*#1^3) & ]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 \, x^{2} + \sqrt {4 \, x^{4} + 3}}}{\sqrt {4 \, x^{4} + 3} {\left (d x + c\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)), x)

________________________________________________________________________________________

maple [F]  time = 0.09, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 x^{2}+\sqrt {4 x^{4}+3}}}{\left (d x +c \right ) \sqrt {4 x^{4}+3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x)

[Out]

int((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 \, x^{2} + \sqrt {4 \, x^{4} + 3}}}{\sqrt {4 \, x^{4} + 3} {\left (d x + c\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2+(4*x^4+3)^(1/2))^(1/2)/(d*x+c)/(4*x^4+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^2 + sqrt(4*x^4 + 3))/(sqrt(4*x^4 + 3)*(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {2\,x^2+\sqrt {4\,x^4+3}}}{\sqrt {4\,x^4+3}\,\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2 + (4*x^4 + 3)^(1/2))^(1/2)/((4*x^4 + 3)^(1/2)*(c + d*x)),x)

[Out]

int((2*x^2 + (4*x^4 + 3)^(1/2))^(1/2)/((4*x^4 + 3)^(1/2)*(c + d*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 x^{2} + \sqrt {4 x^{4} + 3}}}{\left (c + d x\right ) \sqrt {4 x^{4} + 3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**2+(4*x**4+3)**(1/2))**(1/2)/(d*x+c)/(4*x**4+3)**(1/2),x)

[Out]

Integral(sqrt(2*x**2 + sqrt(4*x**4 + 3))/((c + d*x)*sqrt(4*x**4 + 3)), x)

________________________________________________________________________________________