3.14.85 \(\int \frac {(-1+x^4) (1+x^2+3 x^4+x^6+x^8)}{(1+x^2+x^4)^{3/2} (1+3 x^2+5 x^4+3 x^6+x^8)} \, dx\)

Optimal. Leaf size=110 \[ -\frac {x}{\sqrt {x^4+x^2+1}}+\sqrt {\frac {1}{3} \left (-2+2 i \sqrt {3}\right )} \tan ^{-1}\left (\frac {2 x}{\left (\sqrt {3}-i\right ) \sqrt {x^4+x^2+1}}\right )+\sqrt {\frac {1}{3} \left (-2-2 i \sqrt {3}\right )} \tan ^{-1}\left (\frac {2 x}{\left (\sqrt {3}+i\right ) \sqrt {x^4+x^2+1}}\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 1.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-1+x^4\right ) \left (1+x^2+3 x^4+x^6+x^8\right )}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[((-1 + x^4)*(1 + x^2 + 3*x^4 + x^6 + x^8))/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^6 + x^8)),x]

[Out]

(x*(1 - x^2))/Sqrt[1 + x^2 + x^4] - (x*(2 + x^2))/(3*Sqrt[1 + x^2 + x^4]) - (2*x*(1 + 2*x^2))/(3*Sqrt[1 + x^2
+ x^4]) + (8*x*Sqrt[1 + x^2 + x^4])/(3*(1 + x^2)) - (8*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2
*ArcTan[x], 1/4])/(3*Sqrt[1 + x^2 + x^4]) + (3*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[
x], 1/4])/Sqrt[1 + x^2 + x^4] - 4*Defer[Int][1/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^6 + x^8)), x] -
 8*Defer[Int][x^2/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^6 + x^8)), x] - 12*Defer[Int][x^4/((1 + x^2
+ x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^6 + x^8)), x] - 2*Defer[Int][x^6/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x
^4 + 3*x^6 + x^8)), x]

Rubi steps

\begin {align*} \int \frac {\left (-1+x^4\right ) \left (1+x^2+3 x^4+x^6+x^8\right )}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx &=\int \left (\frac {3}{\left (1+x^2+x^4\right )^{3/2}}-\frac {2 x^2}{\left (1+x^2+x^4\right )^{3/2}}+\frac {x^4}{\left (1+x^2+x^4\right )^{3/2}}-\frac {2 \left (2+4 x^2+6 x^4+x^6\right )}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{\left (1+x^2+x^4\right )^{3/2}} \, dx\right )-2 \int \frac {2+4 x^2+6 x^4+x^6}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx+3 \int \frac {1}{\left (1+x^2+x^4\right )^{3/2}} \, dx+\int \frac {x^4}{\left (1+x^2+x^4\right )^{3/2}} \, dx\\ &=\frac {x \left (1-x^2\right )}{\sqrt {1+x^2+x^4}}-\frac {x \left (2+x^2\right )}{3 \sqrt {1+x^2+x^4}}-\frac {2 x \left (1+2 x^2\right )}{3 \sqrt {1+x^2+x^4}}+\frac {1}{3} \int \frac {2+x^2}{\sqrt {1+x^2+x^4}} \, dx+\frac {2}{3} \int \frac {1+2 x^2}{\sqrt {1+x^2+x^4}} \, dx-2 \int \left (\frac {2}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )}+\frac {4 x^2}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )}+\frac {6 x^4}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )}+\frac {x^6}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )}\right ) \, dx+\int \frac {2+x^2}{\sqrt {1+x^2+x^4}} \, dx\\ &=\frac {x \left (1-x^2\right )}{\sqrt {1+x^2+x^4}}-\frac {x \left (2+x^2\right )}{3 \sqrt {1+x^2+x^4}}-\frac {2 x \left (1+2 x^2\right )}{3 \sqrt {1+x^2+x^4}}-\frac {1}{3} \int \frac {1-x^2}{\sqrt {1+x^2+x^4}} \, dx-\frac {4}{3} \int \frac {1-x^2}{\sqrt {1+x^2+x^4}} \, dx+2 \int \frac {1}{\sqrt {1+x^2+x^4}} \, dx-2 \int \frac {x^6}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx+3 \int \frac {1}{\sqrt {1+x^2+x^4}} \, dx-4 \int \frac {1}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx-8 \int \frac {x^2}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx-12 \int \frac {x^4}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx+\int \frac {1}{\sqrt {1+x^2+x^4}} \, dx-\int \frac {1-x^2}{\sqrt {1+x^2+x^4}} \, dx\\ &=\frac {x \left (1-x^2\right )}{\sqrt {1+x^2+x^4}}-\frac {x \left (2+x^2\right )}{3 \sqrt {1+x^2+x^4}}-\frac {2 x \left (1+2 x^2\right )}{3 \sqrt {1+x^2+x^4}}+\frac {8 x \sqrt {1+x^2+x^4}}{3 \left (1+x^2\right )}-\frac {8 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \tan ^{-1}(x)|\frac {1}{4}\right )}{3 \sqrt {1+x^2+x^4}}+\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{4}\right )}{\sqrt {1+x^2+x^4}}-2 \int \frac {x^6}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx-4 \int \frac {1}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx-8 \int \frac {x^2}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx-12 \int \frac {x^4}{\left (1+x^2+x^4\right )^{3/2} \left (1+3 x^2+5 x^4+3 x^6+x^8\right )} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.29, size = 1525, normalized size = 13.86

result too large to display

Warning: Unable to verify antiderivative.

[In]

Integrate[((-1 + x^4)*(1 + x^2 + 3*x^4 + x^6 + x^8))/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^6 + x^8))
,x]

[Out]

(-x - 2*(-1)^(2/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*(-((EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1
 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0]), I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]*(-1 + Root[1 + 3*#1 + 5*#1^2 + 3*#1
^3 + #1^4 & , 1, 0]^2))/((Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0] - Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 +
 #1^4 & , 2, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0] - Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 &
, 3, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0] - Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])
)) + (EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0]), I*ArcSinh[(-1)^(5/6)*x], (-1)
^(2/3)]*(-1 + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0]^2))/((Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 &
, 1, 0] - Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0]
- Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0] - Root[1
 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])) + EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4
& , 3, 0]), I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]/((-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0] + Root[1
+ 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0])*(-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0] + Root[1 + 3*#1
+ 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0] - Root[1 + 3*#1 + 5*#1^2
 + 3*#1^3 + #1^4 & , 4, 0])) - (EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0]), I*A
rcSinh[(-1)^(5/6)*x], (-1)^(2/3)]*Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0]^2)/((-Root[1 + 3*#1 + 5*#1^
2 + 3*#1^3 + #1^4 & , 1, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0])*(-Root[1 + 3*#1 + 5*#1^2 + 3*#
1^3 + #1^4 & , 2, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0])*(Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1
^4 & , 3, 0] - Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])) + EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1 + 5*
#1^2 + 3*#1^3 + #1^4 & , 4, 0]), I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]/((-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^
4 & , 1, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])*(-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2
, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])*(-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0] +
Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])) - (EllipticPi[-((-1)^(1/3)/Root[1 + 3*#1 + 5*#1^2 + 3*#1^3
+ #1^4 & , 4, 0]), I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]*Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0]^2)/((
-Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 1, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])*(-Root[1
 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 2, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0])*(-Root[1 + 3*#1
 + 5*#1^2 + 3*#1^3 + #1^4 & , 3, 0] + Root[1 + 3*#1 + 5*#1^2 + 3*#1^3 + #1^4 & , 4, 0]))))/Sqrt[1 + x^2 + x^4]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.21, size = 73, normalized size = 0.66 \begin {gather*} -\frac {x}{\sqrt {x^4+x^2+1}}+\frac {\tan ^{-1}\left (\frac {\sqrt {3} x \sqrt {x^4+x^2+1}}{x^4+1}\right )}{\sqrt {3}}-\tanh ^{-1}\left (\frac {x \sqrt {x^4+x^2+1}}{\left (x^2+1\right )^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((-1 + x^4)*(1 + x^2 + 3*x^4 + x^6 + x^8))/((1 + x^2 + x^4)^(3/2)*(1 + 3*x^2 + 5*x^4 + 3*x^
6 + x^8)),x]

[Out]

-(x/Sqrt[1 + x^2 + x^4]) + ArcTan[(Sqrt[3]*x*Sqrt[1 + x^2 + x^4])/(1 + x^4)]/Sqrt[3] - ArcTanh[(x*Sqrt[1 + x^2
 + x^4])/(1 + x^2)^2]

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 146, normalized size = 1.33 \begin {gather*} -\frac {2 \, \sqrt {3} {\left (x^{4} + x^{2} + 1\right )} \arctan \left (\frac {\sqrt {3} \sqrt {x^{4} + x^{2} + 1} {\left (x^{4} + 1\right )}}{3 \, {\left (x^{5} + x^{3} + x\right )}}\right ) - 3 \, {\left (x^{4} + x^{2} + 1\right )} \log \left (\frac {x^{8} + 5 \, x^{6} + 7 \, x^{4} + 5 \, x^{2} - 2 \, {\left (x^{5} + 2 \, x^{3} + x\right )} \sqrt {x^{4} + x^{2} + 1} + 1}{x^{8} + 3 \, x^{6} + 5 \, x^{4} + 3 \, x^{2} + 1}\right ) + 6 \, \sqrt {x^{4} + x^{2} + 1} x}{6 \, {\left (x^{4} + x^{2} + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-1)*(x^8+x^6+3*x^4+x^2+1)/(x^4+x^2+1)^(3/2)/(x^8+3*x^6+5*x^4+3*x^2+1),x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*(x^4 + x^2 + 1)*arctan(1/3*sqrt(3)*sqrt(x^4 + x^2 + 1)*(x^4 + 1)/(x^5 + x^3 + x)) - 3*(x^4 + x
^2 + 1)*log((x^8 + 5*x^6 + 7*x^4 + 5*x^2 - 2*(x^5 + 2*x^3 + x)*sqrt(x^4 + x^2 + 1) + 1)/(x^8 + 3*x^6 + 5*x^4 +
 3*x^2 + 1)) + 6*sqrt(x^4 + x^2 + 1)*x)/(x^4 + x^2 + 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{8} + x^{6} + 3 \, x^{4} + x^{2} + 1\right )} {\left (x^{4} - 1\right )}}{{\left (x^{8} + 3 \, x^{6} + 5 \, x^{4} + 3 \, x^{2} + 1\right )} {\left (x^{4} + x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-1)*(x^8+x^6+3*x^4+x^2+1)/(x^4+x^2+1)^(3/2)/(x^8+3*x^6+5*x^4+3*x^2+1),x, algorithm="giac")

[Out]

integrate((x^8 + x^6 + 3*x^4 + x^2 + 1)*(x^4 - 1)/((x^8 + 3*x^6 + 5*x^4 + 3*x^2 + 1)*(x^4 + x^2 + 1)^(3/2)), x
)

________________________________________________________________________________________

maple [C]  time = 0.26, size = 356, normalized size = 3.24 \begin {gather*} -\frac {2 \left (\frac {1}{6} x^{3}+\frac {1}{3} x \right )}{\sqrt {x^{4}+x^{2}+1}}+\frac {-\frac {4}{3} x^{3}-\frac {2}{3} x}{\sqrt {x^{4}+x^{2}+1}}-\frac {6 \left (-\frac {1}{6} x +\frac {1}{6} x^{3}\right )}{\sqrt {x^{4}+x^{2}+1}}+\frac {\frac {8}{3} x^{3}-\frac {2}{3} x}{\sqrt {x^{4}+x^{2}+1}}-\frac {\left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{8}+3 \textit {\_Z}^{6}+5 \textit {\_Z}^{4}+3 \textit {\_Z}^{2}+1\right )}{\sum }\underline {\hspace {1.25 ex}}\alpha \left (2 \underline {\hspace {1.25 ex}}\alpha ^{6}+6 \underline {\hspace {1.25 ex}}\alpha ^{4}+8 \underline {\hspace {1.25 ex}}\alpha ^{2}+3\right ) \left (-\frac {\arctanh \left (\frac {\left (2 \underline {\hspace {1.25 ex}}\alpha ^{2}+1\right ) \left (-12 \underline {\hspace {1.25 ex}}\alpha ^{6}-30 \underline {\hspace {1.25 ex}}\alpha ^{4}-45 \underline {\hspace {1.25 ex}}\alpha ^{2}+7 x^{2}-10\right )}{14 \sqrt {\underline {\hspace {1.25 ex}}\alpha ^{4}+\underline {\hspace {1.25 ex}}\alpha ^{2}+1}\, \sqrt {x^{4}+x^{2}+1}}\right )}{\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{4}+\underline {\hspace {1.25 ex}}\alpha ^{2}+1}}-\frac {\sqrt {2}\, \left (-\underline {\hspace {1.25 ex}}\alpha ^{7}-3 \underline {\hspace {1.25 ex}}\alpha ^{5}-5 \underline {\hspace {1.25 ex}}\alpha ^{3}-3 \underline {\hspace {1.25 ex}}\alpha \right ) \sqrt {x^{2}+2-i x^{2} \sqrt {3}}\, \sqrt {x^{2}+2+i x^{2} \sqrt {3}}\, \EllipticPi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , \frac {i \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{6}}{2}+\frac {\underline {\hspace {1.25 ex}}\alpha ^{6}}{2}+\frac {3}{2}+\frac {3 i \underline {\hspace {1.25 ex}}\alpha ^{4} \sqrt {3}}{2}+\frac {3 \underline {\hspace {1.25 ex}}\alpha ^{4}}{2}+\frac {5 i \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}}{2}+\frac {5 \underline {\hspace {1.25 ex}}\alpha ^{2}}{2}+\frac {3 i \sqrt {3}}{2}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {i \sqrt {3}-1}\, \sqrt {x^{4}+x^{2}+1}}\right )\right )}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4-1)*(x^8+x^6+3*x^4+x^2+1)/(x^4+x^2+1)^(3/2)/(x^8+3*x^6+5*x^4+3*x^2+1),x)

[Out]

-2*(1/6*x^3+1/3*x)/(x^4+x^2+1)^(1/2)+4*(-1/3*x^3-1/6*x)/(x^4+x^2+1)^(1/2)-6*(-1/6*x+1/6*x^3)/(x^4+x^2+1)^(1/2)
+4*(2/3*x^3-1/6*x)/(x^4+x^2+1)^(1/2)-1/6*sum(_alpha*(2*_alpha^6+6*_alpha^4+8*_alpha^2+3)*(-1/(_alpha^4+_alpha^
2+1)^(1/2)*arctanh(1/14*(2*_alpha^2+1)*(-12*_alpha^6-30*_alpha^4-45*_alpha^2+7*x^2-10)/(_alpha^4+_alpha^2+1)^(
1/2)/(x^4+x^2+1)^(1/2))-2^(1/2)*(-_alpha^7-3*_alpha^5-5*_alpha^3-3*_alpha)/(I*3^(1/2)-1)^(1/2)*(x^2+2-I*3^(1/2
)*x^2)^(1/2)*(x^2+2+I*3^(1/2)*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*EllipticPi((-1/2+1/2*I*3^(1/2))^(1/2)*x,1/2*I*_alph
a^6*3^(1/2)+1/2*_alpha^6+3/2+3/2*I*_alpha^4*3^(1/2)+3/2*_alpha^4+5/2*I*_alpha^2*3^(1/2)+5/2*_alpha^2+3/2*I*3^(
1/2),(-1/2-1/2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))),_alpha=RootOf(_Z^8+3*_Z^6+5*_Z^4+3*_Z^2+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{8} + x^{6} + 3 \, x^{4} + x^{2} + 1\right )} {\left (x^{4} - 1\right )}}{{\left (x^{8} + 3 \, x^{6} + 5 \, x^{4} + 3 \, x^{2} + 1\right )} {\left (x^{4} + x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-1)*(x^8+x^6+3*x^4+x^2+1)/(x^4+x^2+1)^(3/2)/(x^8+3*x^6+5*x^4+3*x^2+1),x, algorithm="maxima")

[Out]

integrate((x^8 + x^6 + 3*x^4 + x^2 + 1)*(x^4 - 1)/((x^8 + 3*x^6 + 5*x^4 + 3*x^2 + 1)*(x^4 + x^2 + 1)^(3/2)), x
)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (x^4-1\right )\,\left (x^8+x^6+3\,x^4+x^2+1\right )}{{\left (x^4+x^2+1\right )}^{3/2}\,\left (x^8+3\,x^6+5\,x^4+3\,x^2+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^4 - 1)*(x^2 + 3*x^4 + x^6 + x^8 + 1))/((x^2 + x^4 + 1)^(3/2)*(3*x^2 + 5*x^4 + 3*x^6 + x^8 + 1)),x)

[Out]

int(((x^4 - 1)*(x^2 + 3*x^4 + x^6 + x^8 + 1))/((x^2 + x^4 + 1)^(3/2)*(3*x^2 + 5*x^4 + 3*x^6 + x^8 + 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4-1)*(x**8+x**6+3*x**4+x**2+1)/(x**4+x**2+1)**(3/2)/(x**8+3*x**6+5*x**4+3*x**2+1),x)

[Out]

Timed out

________________________________________________________________________________________